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Abstract. We propose a system capable in real time of adding control-
lable and plausible oscillating physical like reaction effects in response to
external forces (perturbations). These oscillating effects may be used to
modify a motion or to customize it in a cartoon like way. The core of our
system is based on several connected 3D pendulums with a propagating
reaction. Our pendulums always return to a preferred direction that can
be fixed in advance or can be modified during the motion by external
predefined data (like keyframe). Our pendulums are fully controllable
concerning reaction time and damping, leading to a fully determinis-
tic system. And they are easy to implement even without any previous
knowledge about physics equations. Our system is applicable on articu-
lated body with predefined motion data (manually set or captured) or
procedural animation, and is even capable of simulating cloth.

1 Introduction

Fig. 1: Different implementations of our system. Red arrows: external perturba-
tion. Green arrows: our system immediate response.

There is a big focus in computer graphics to modify/edit any articulated
body animation (traditionally based on predefined motion data like keyframe
or motion capture), and adapt it to match any environment or character. An
articulated body has a large number of degrees of freedom, many constraints of
length or angles, as well as many possible self-collisions during animation. Thus,
the physics that govern its movement is computationally expensive, numerically



imprecise, and often difficult to predict and to control. A recent survey by Wel-
bergen et al. [1] gives a good overview of the different methods and paradigms
used and most importantly the trade offs between animation control and motion
naturalness. In this context, there is a crucial demand for real-time methods
providing physically plausible, but controllable effects [2].

We propose an original system, to our knowledge, that adds physical like
reaction effects to any skeleton-based object, in real-time with a full user control
using our 3D pendulums. The effects we seek to obtain are based on damped
oscillatory motions that propagate through an articulated chain. The effect may
be visually plausible like a rope moving in the wind, or a body reacting to exter-
nal forces, and may also be more cartoon like which is shown in the accompanied
video by giving a dancing like effect. In our system each bone of the articulated
body is animated by a 3D pendulum. The pendulum is guided by a spring-
damper that pulls it toward a customizable direction. Our approach has two
objectives. Firstly, we ensure body length constraints between two joints work-
ing only on the angle between bodies. Secondly, we make a predictable real-time
system in which we can control the reaction time to reach a user-defined direc-
tion and also the regime (critical or underdamped) of the oscillations around this
direction. Our pendulums have three degrees of control: reaction time, damping
and target direction. This concept of 3D pendulums may be applicable in a mul-
titude of scenarii with some of them illustrated in Figure 1. We must emphasize
that our system is better suited for acyclic bodies and that we do not address the
balancing problem in the case of the biped example. Our system is really easy to
implement, as we will see in section 3, with no need for a full physics simulation,
nor any kind of complex calculations (like the inertia matrix). The mesh of the
3D model is animated with the classical linear blend skinning technique [3].

2 Related Work

Our pendulums oscillate visually like real 3D pendulums by computing their
movements with a mass-spring approach. Mass-spring system is one of the sim-
plest approach to simulate physically-based animation [4] as they offer an intu-
itive and flexible way to model mechanical systems. Furthermore, they can be
used in derived fashion as to animate large crowds of humans and robots in a
believable way in Pixar’s movie WALL-E [5].

Editing motion of an articulated body (producing or modifying an exist-
ing animation) is an important topic in computer animation. For instance,
some methods aim at warping the time of an existing motion [6], or combin-
ing/blending existing motions often represented in an animation graph [7], others
propose the use of signal processing tools to modify an animation [8].

In parallel of these approaches, an important aspect is to add physical reac-
tions to animations, like blending an existing motion with a physical response
[9]. Zordan et al. in [10, 11] use a Proportional-Derivative (PD) controller to
drive the dynamic body motion toward a re-entry in motion capture data. Our
method may be related to a PD controller, and also to the MRAC controller



that uses the Adaptive Control proposed by [12] and used in [13]. All of these
controllers are like our pendulum bringing a bone to a preferred direction but
we differ in several essential ways: the other methods always try to return to a
preferred direction (or position) even if there is no external perturbation. That
introduces a delay in the produced animation between the target pose (keyframe
or motion capture data) and the response of the PD controller like in [14]. On
the other hand, our system is a superposed layer over the motion data and only
reacts when there is an external perturbation. Our system plays exactly the mo-
tion data with no delay, and only adds the physical like reaction effects when
needed. Another difference is the controllability; our system is designed to be
temporally controlled (control over the reaction time). Temporal control in the
case of the PD controller is hard to achieve and demands some hand tuning of the
gain constants. In [15] they show the ability to temporally control PD controllers
(using adaptive calculation of the gain constants), but it involves some heavy
calculations of the inertia matrix of each joint on each keyframe, with specific
calculations in the case of an external perturbation (calculating the re-entry key
frame). Finally, all the mentioned controllers are always critically damped. On
the other hand, our pendulums can be critically damped or underdamped while
maintaining the temporal control. MRAC controller is designed to be temporally
controlled but it calculates and adapts its gain constants on each frame using
forces and torques calculations, while our pendulums do not need any adaptive
pass once the user sets the reaction time and the damping, plus the ability to
modify them in real time.

We differ from other systems of skeleton-driven deformations like [16] in
that we concentrate only on deforming the skeleton of the articulated body
without any specific treatment to the mesh. Our mesh is animated by the classical
linear blend skinning [3]. We illustrate anecdotally that a rigid tissue may be
represented by a tree of bones animated by our approach with a simple, large
time-step, controllable computation. Our goal is not to simulate realistic fabric
like in recent techniques [17].

3 3D pendulums

In our system, a bone of an articulated body is animated as a pendulum with a
configurable preferred direction as illustrated in Figure 2(a). A pendulum is an
anchored bar, with a fixed length L, attracted to its target direction by a spring,
which pulls the pendulum toward this direction as described in Section 3.1. This
idea allows to easily add plausible oscillations to any animation with a temporal
control, as explained in Section 3.2. In Section 3.3 and 3.4 we present our linear
algorithm that deals with a tree of pendulums or a skeleton, by propagating the
motion of a single pendulum to its father and sons.

3.1 3D pendulum principle

We design a pendulum
−→
V as a rotating bar attracted to its preferred direc-

tion by two springs: one spring on each 2D plane XY and ZY as illustrated
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Fig. 2: (a) 3D pendulum (b) A 3D pendulum composed of two 2D pendulums
with Y as their preferred direction

in Figure 2(b). We choose this scheme with two springs instead of one spring
to avoid spiral rotation motion around the target direction. The computation
of pendulum

−→
V motion is done using its projections

−−→
VXY ,

−−→
VZY independently.

During the motion, after calculating the two new spring positions in 2D
−−→
VXY

and
−−→
VZY , the 3D position

−→
V is obtained by combining them and ensuring that

‖−→V ‖ = ‖−−→VXY ‖ = ‖−−→VZY ‖ = L. In the current implementation we omit the twist

component around the axe of the 3D pendulum
−→
V which is the third degree of

freedom, we plan to add it in a future work. It is interesting to notice that by
using the target direction

−−→−Y , we can give the impression of gravity that always
pulls the bodies toward the ground.

3.2 Time Based control for spring dampers

Let m be a mass connected to a spring with stiffness constant k. This mass
oscillates around a rest position x0 with a viscous damper that has a damp-
ing coefficient c. Based on Newton second law of physics the acceleration is
ẍ = −(k(x−x0)+cẋ)/m where x is the current position of the mass, ẋ its veloc-
ity. We integrate this motion using the Verlet scheme [4] which was numerically
stable during our experiment described in Section 4. Giving a random position x
to the mass, it oscillates around the rest value x0, seeking to minimize the error
(x − x0) until reaching zero. This oscillation depends directly on the constants
(k, c,m). In order to timely control the movement of this spring damper we use
the Settling Time Ts principle. It is the time required for the mass position x
to reach its max amplitude inside a given error interval (See Figure 3(a)) and
remains inside it. This interval is symmetrical around x0.

Ts = − ln(tolerancefraction)

ζ ∗ w0
(1)

Where the tolerance fraction is the needed error interval shown in Figure 3(a),
w0 is the natural frequency and ζ is the damping of the ordinary differential



equation governing a damped harmonic oscillator:

mẍ+ cẋ+ k(x− x0) = 0

or
ẍ+ 2 ∗ ζ ∗ w0 ∗ ẋ+ w2

0 ∗ (x− x0) = 0

with

ζ =
c

2mw0
, w0 =

√
k

m
(2)

By fixing the tolerance fraction to 5% in equation (1) and by using the user
provided settling time and damping (critically damped or underdamped), the
spring damper constants k and c are calculated from equation (2), achieving
total control over the curve of the spring damper while maintaining its dynamic
aspect.
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Fig. 3: (a) Spring oscillation under different damping (b) 3D pendulums Tree in
Black, Skeleton Vertical Target Pose

Figure 3(a) illustrates springs oscillating under different damping values.
They oscillates around their x0 until full stop, with their respective settling time.
The third spring damper is a critical spring damper which converges toward x0
faster than the others, and without oscillation.

3.3 Tree of 3D pendulums

The skeleton of an articulated body is a tree of connected joints (articulations).
By connecting several 3D pendulums and by defining the target direction for each
one of them, the final result is a tree of pendulums that maps the articulated
structure, as shown in Figure 3(b). Some of the 3D pendulums act as father node
for several others. When they move, the anchor points of their children moves. In
order to have a visually believable reaction, these 3D pendulums need to interact
with each other. We define two strategies used in conjunction to achieve this goal:



Father Pursuit strategy and Son Pursuit strategy. In the accompanying video we
show the similarities between the motion of a chain of pendulums fully-physically
simulated and our chain of 3D pendulums that incorporate these strategies. For
simplicity, these strategies will be described in a 2D plane.

3.3.1 Father Pursuit Strategy. The objective of this strategy is to propa-
gate the motion of the father 3D pendulum toward its children, thus they need
to incorporate this movement in their own motion. Figure 4(a) illustrates two
connected pendulums PA,PB , A,B are the positions of each mass, LA,LB are
the lengths of the bars, and θA,θB are the errors that each pendulum seeks to
minimize. In this example the preferred direction of the pendulums are identical
(the dashed -

−→
Y ).

The update system is a top-down system scheme, starting from the anchor
toward the leaf. First, on time t1 (in black) the error that we try to minimize is
θA1 in PA and θB1 in PB . Now, on time t2 (in red):

1. PA moves, its spring damper tries to minimize the error, and has a new
position A2.

2. PB : the angle εAB between the two vectors
−−−→
B1A1 and

−−−→
B1A2 is added to its

own error, αB = θB1 + εAB .
3. PB : letting the spring damper integrate its equations, we obtain a new angle

value θB2 which contains the new pursuit error.
4. PB : based on LB the new position B2 (in blue) is calculated.
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Fig. 4: (a) Father Pursuit Strategy (b) Son Pursuit strategy

Without this process, the new position of PB would have been B3 (in green),
which is not correct and would have produced a non-logical disconnected motion.
This Father Pursuit process is extended to every pendulum in the chain. A third
pendulum PC follows the motion of its father PB , and so on. By extending this
process in 3D we have a totally plausible physical chain of 3D pendulums (as
seen in the accompanying video). Each one reacting to its father movement while
oscillating around its target direction.



3.3.2 Son Pursuit Strategy. The objective of this strategy is to reflect the
perturbation that can occur on the son level, to reflect it on its father. It occurs
when the mass of PB takes a perturbation as seen in Figure 4(b) (in green). The
perturbation is regarded as a change in the position, as if we only take the final
position resulted of an impulse applied to a rigid body.

1. The perturbation induces its full impact as if the mass PB was not attached
(in red).

2. PB ’s mass has two positions: B1 (the old one) and B3 (the new one). In-
verting the previously detailed computation of the father induced error εAB ,
we calculate the child error εBA, the angle between

−−−→
A1B3 and

−−−→
A1B1 and

adding it to θB1, we obtain αB = θB1 + εBA.
3. The mass of PA should follow, as it is being pulled by its son now. The new

position A3 is calculated easily by choosing on the line A1B3 the point A3
where ‖A1B1‖ = ‖A3B3‖.

4. This process propagates toward the anchor.
5. The new positions are recalculated based on the fixed anchor position.

With this scheme, all the errors that the spring dampers need to minimize be-
cause of a perturbation are calculated in a bottom-up way starting from the son
that took the perturbation toward the anchor.

3.3.3 Final workflow. In a tree of pendulums, calculation cycles may occur
when two nodes are influencing each others in an endless loop (father influencing
its son, then the son influencing its father, and so on.). To avoid this kind of loops,
our update system is inspired of Featherstone’s divide and conquer algorithm [18,
19] which eliminates these calculation cycle problems and breaks computation
into two main linear passes: a bottom-up then a top-down pass through the
articulated body tree. We adopt this paradigm, only the calculations differ as
follow:

1. For each 3D pendulum perturbed in the tree: resolve this perturbation by
applying it on its mass then calculate the errors ε in a bottom-up iteration
toward its ancestors according to the Son Pursuit strategy.

2. For each father 3D pendulum integrate all the children errors (ε1,ε2 etc.) to
its own error θ.

3. Start the standard top-down pass starting from the anchor toward the leaf
according to the Father Pursuit strategy.

In the previous step 2, there are many ways to calculate the integration:

– Summing up all the perturbation errors coming from its children: it is the
method used to produce all of our results. It is the simplest method, and the
one we chose after testing.

– Calculating an average: this method will perturb the father node in the same
direction of the previous method, but with less amplitude. It can be useful
when the application decides that the father node should be less affected by
its children.



– Doing a weighted average based on:
• The mass: the heavier son has more influence on its father.
• The importance of each branch: by assigning predefined priorities on the

children.

We can imagine many other possibilities based on specific application needs. Our
system is quite easy to implement and the actual calculations in each strategy
require only basic knowledge in 3D vector math. None knowledge in physics
systems is required; we do not compute the inertia matrix nor we use the notion
of force. In the same time we can use physics principles to enhance the end result
like in the case of the father pendulum integrating its children errors based on
the inertia matrix.

3.4 3D model Skeleton Vs. 3D pendulums tree

In the following section 4 we use a skinned 3D models, and we construct the
pendulums tree based on a predefined skeleton. Starting from the bind pose
(rest pose) of the skeleton, we create a 3D pendulum for each skeletal connection
(bone) with the same length and with its rest preferred direction calculated from
the bone rest pose orientation. By maintaining the parenting hierarchy of the
base skeleton, we have a pendulums tree that maps this skeleton perfectly. While
playing a motion data, we will modify the target direction of each corresponding
pendulum thus reproducing exactly the motion data. If the 3D pendulums start
to react to an external perturbation, each of the 3D pendulums orientation and
position is applied to the corresponding bone.

4 Applications and Results

In this section, we present several ways to use the 3D pendulums tree: add phys-
ical effects to lifeless models like an octopus, modifying pre-defined motion data
with physics reactions, and anecdotally a cloth simulation (which is normally a
closed-loop problem). In all cases, the pendulums reaction is totally controllable:
reaction time, damping and target direction. The results were computed on an
Intel Core 2 Duo 2GHz, 2 GB RAM, with and ATI X1400, 256 MB. Our exper-
imentation does not manage collisions, but we can easily imagine a system that
creates an impulse (change in the position) on each 3D pendulum in reaction to
a contact.

4.1 Adding physical reaction effects to any skeleton-based bodies

On Figure 5, we use our system on a lifeless octopus model. By adding some
simple procedural animation to its tentacles (pulling only the root node of each
tentacle toward the center at random intervals) the rest of the model reacts in a
passive way, modifying the animation and adding plausible physics effects. The
octopus model consists of 150 joints and the computation time of our superposed
physical effects is only 0.3 ms, which is negligible in today’s standards.
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Fig. 5: From top left: [1] the model with its 3D pendulums, [2] rest pose, [3] we
pull all the tentacles toward the center, [4] reacting, [5] tentacles overshooting
(underdamped regime), [6] return to rest pose

We can also use our system on animated models. In that case on each frame,
the motion data takes control of the skeleton changing the preferred direction of
each pendulums. With no external perturbations, the 3D pendulums rigorously
follow the animation data, while when an external perturbation occurs, our
system reacts to this perturbation while trying to return to the needed target
pose. With such a technique, our system adds a plausible physical reaction effects
over a predefined animation data, as a superposed layer of animation. These
reactions can furthermore be customized by making a section of the body more
rigid, more flexible, changing the reaction time, or tuning the damping. This
gives the end user a powerful tool to modulate the reaction of the body in a very
intuitive and easy way.

Fig. 6: From top Left: [1] Original (on the left) and our simulated articulated
body (on the right), [2] Two perturbations, [3] to [5] Reaction and returning to
Original keyfarme

By playing only the animation data on our test machine, for the previous
model in Figure 6 with 92 joints, the average computation time for each frame
is 0.06 ms. When playing the same animation using our pendulums and two
perturbations, the computation time rises to an average of 0.46 ms, which stays
negligible. This overcost consists of reading the motion capture data in order to
change the pendulums target direction, integrating the perturbation and doing
the main integration (based on the explained workflow).

4.2 Cloth Simulation

Although cloth is a closed loop problem, we are capable of giving the impression
of an animated cloth by simply creating several vertical 3D pendulums that cover
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Fig. 7: (a) A cloth represented as a tree of pendulums (b) Cloth being pulled in
the middle with a visual representation of the 3D pendulums

the cloth, plus attaching several horizontal 3D pendulums to each vertical one
(one vertical is shown in Figure 7(a)). By doing a weighted average between the
positions of all horizontal pendulums activated by their vertical father, weighted
based on the distance between each horizontal pendulum and its vertical father,
we compute the final cloth position. We have a fully reactive cloth without
any tearing problems, and the cloth dimensions are always ensured vertically
and horizontally (a constraint that we always ensure in the calculations), while
giving total control over the reaction time. We are not aiming to compete against
more general, visually and physically accurate cloth simulators that are better
suited to simulate actual human cloth for example. We are just proposing a less
sophisticated, but stable and fast enough method that can gives the effect of
a reactive cloth. In Figure 7(b), only the three middle vertical 3D pendulums
with their horizontal children’s are active and being simulated, because they are
the ones that have been perturbed, thus optimizing the calculation time. It is
constructed using about 1500 3D pendulums. The average calculation time of
these pendulums with the post calculations for the final cloth is around 5 ms.

5 Conclusion and Future Work

Our system is linear, straightforward and based on simple 3D pendulums. It is
capable of adding physical like reaction effects to skeleton-based body very easily.
Plus it is highly customizable: we can control reaction time, target direction and
damping of the motion. The current system does not enforce angular constraints.
We need to incorporate them in our future work in order to simulate real joint
constraints, that exists in most skeleton-based bodies. Beside that, our future
work will be to couple this system with a balance solver: that should give us
not only the physical reactions to external perturbations, but also the realism
that comes from the different strategies that the articulated body uses in order
to regain balance. Our system can be used to simulate hair which is an acyclic
system and fits neatly in the domain that the 3D pendulums system can simulate.
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