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Abstract: In on-line persistent virtual worlds like MMORPG’s: Massively Multiplayer Online 

Role Playing Game, users control their avatar when they are connected, but this avatar 
disappears from the world when they disconnect. The goal is to allow to an avatar to 
continue evolving in the virtual world when the user is disconnected, by reproducing 
as faithfully as possible the actions of the human controlling it. We propose the use of 
the machine learning by implicit imitation concepts to generate a behavior similar to 
that of the user. 

 
Mots Clés :  Apprentissage par renforcement, imitation implicite, logique floue, système de 

classeurs, Monde virtuel, MMORPG. 
 
Résumé : Dans les mondes virtuels on-line persistants comme les MMORPGs : Massively 

Multiplayer Online Role Playing Games, les utilisateurs contrôlent leur avatar 
lorsqu’ils sont connectés, mais cet avatar disparaît du monde quand ils déconnectés. 
L’objectif est de permettre à un avatar de continuer à évoluer dans le monde virtuel 
lorsque l’utilisateur est déconnecté, et ceci en reproduisant le plus fidèlement possible 
les actions de l’humain qui le contrôle. Nous proposons l’utilisation des concepts 
d’apprentissage par imitation implicite pour générer un comportement proche de celui 
de l’utilisateur. 
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Chapter 1: Introduction 
 
L’industrie des jeux vidéo est l’un des industries qui ne s’arrête pas de grandir depuis 

1958 jusqu'à maintenant, et pour maintenir cette succès les développeurs des jeux vidéo ont 
été obliger de rechercher d'autres façon de modéliser le comportement des personnages non-
jouables ou les PNJ (comme les ennemis), autres que les vieilles méthodes de la création des 
ennemis inintelligents qui ne peuvent marcher que sur un chemin prédéterminé avec peu 
d'interactions, pour ça les concepts d'intelligence artificielle ont commencé à apparaître dans 
les jeux vidéo pour créer des PNJ avec de la personnalité, des environnements vivants, et des 
mondes virtuels immersifs où les joueurs sentent qu'ils sont en interaction avec de vrais 
humains, pas des personnages scriptés. 
 

The video game industry is one of the most ever growing industries these days, it used 
to be for niche markets only, but now it is for mainstream markets: you can find a video game 
related products almost everywhere. It all started in October 18, 1958 when William 
Higinbotham, a nuclear scientist, created Tennis For Two, it was never commercially released 
because it was not meant to be an actual video game, more of an electrical experiment, but it 
was one of the first forms of a video game. 

 

 
Figure 1: Tennis For Two 

Another milestone and one of the first video games ever was called Pong, which is a two-
dimensional sports game that simulates table tennis. Created by Allan Alcorn in 1972, you 
could only play it on the arcade machines, until 1975 when Atari, Incorporation created a 
home version of it that was sold to the mass public, Pong sales soared when the unit was 
released in that year; it was one of the first home consoles ever. 
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Figure 2: Pong 

From that day on, there was an explosion of new video games (Pac-Man, Mario series, Metal 
Gear series…), new consoles (Super Nintendo Entertainment System, PlayStation, Xbox…) 
and new companies constructed around video games development (Electronic Arts, 
Ubisoft…), all of them trying to adapt to the demands of the consumers. Video game industry, 
has another effect: it is one of the driving forces of the most of the new technological 
advancement in CPU’s, GPU’s, sound cards, storage devices like CD-ROM’s, 
DVD’s….because video games are always demanding more and more of raw power in order 
to achieve the desired quality. 
 
At the beginning of video games era it was acceptable to have a few squares on the screen to 
represent the user character and the environment, or enemies that move on a simple path 
aimlessly with really simple behavior (attacking the user character directly without any kind 
of intelligence). 
On the other hand these days video games are more immersive by replicating real 
environments, with complex stories, and engaging game play like (Crysis on the PC, Gears of 
war 2 on the Xbox 360, Killzone 2 on the PlayStation 3) 
 

 
Figure 3: Crysis 
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The improvements on video games were not only in creating more photo realistic games, 
because gamers started demanding more engaging game play and environments, they wanted 
to feel that they are in a living and breathing environment, and since those gamers are the 
ones buying the video games and consoles, developers were forced to search for other ways to 
model the behavior of the Non-Playable Characters or NPC’s (like the enemies) other than the 
old methods of creating unintelligent enemies that can only walk on a pre-determined path 
with limited interactions, that is when the Artificial Intelligence concepts started to gain 
momentum in order to challenge the players with smart enemies, to make NPC’s with 
impressive personalities and to create vivid environments…and by that developers were 
capable of luring the gamers into buying their games with the promise of more immersive 
virtual world where gamers will feel that they are interacting with real humans rather than 
brainless scripted characters. 
So artificial intelligence is becoming a really important component in video games, to model 
complex behaviors and to create that immersive environment the gamers will interact with it 
more naturally. 
 
In the first chapter of this paper I will shed light on the different kinds of algorithms used in 
the artificial intelligence domain, how they are used in the industry in general and more 
specifically in video games, this chapter will also contain some of the most influential 
imitation experiences that I based my work on, while in the second chapter I will start talking 
about my own machine learning by imitation experience, with some interesting results and 
conclusions. 
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Chapter 2: State of the Art 
 
Il existe deux grandes familles de techniques pour résoudre les problèmes d’IA en général, et 
les problèmes d’apprentissage spécifiquement, elles sont :  

 Les méthodes ascendantes : le système utilise la connaissance complète d'un problème 
donné, avec toutes les situations possibles, les actions et les récompenses, ainsi que 
parfois la connaissance d'une expert, pour créer ce système de haut niveau qui est 
capable de résoudre certains problèmes de manière efficace, exemple de telles 
méthodes : machine à états finis, arbres de décisions, systèmes experts, réseaux de 
neurones… 

 Les méthodes descendantes : le programmer fournit le système avec des outils 
suffisamment efficaces pour résoudre le problème, comme : algorithmes de 
planifications, outils de traitement de l'image, certaines méthodes de la robotique…, 
mais sans lui donner la solution explicite, et le système a besoin de combiner les outils 
et les utiliser bien pour trouver une solution, exemple de telles méthodes : algorithmes 
génétiques, apprentissage par renforcement… 

Les méthodes descendantes vont nous aider à créer notre système d’imitation, surtout les 
systèmes de classeurs qui sont un mélange des techniques d’apprentissage par renforcement 
et des algorithmes génétiques. 

2.1. Techniques 
There are two main families of techniques for solving AI related problems in general and 
Machine Learning problems in specific, they are: the Top – Down methods and the Bottom – 
Up methods. 

 
In the Top – Down methods, the system uses the complete knowledge of a given problem, 
with all the possible situations, actions and rewards, plus sometimes the knowledge of an 
expert, to create this high end system which is capable of solving certain problems effectively. 
So it is deterministic, because every possible situation is handled and a proper action is 
assigned to it, and the behavior of the system is predictable, but because it is deterministic, the 
system designers need to know this Complete Knowledge and that is not always possible, 
moreover, the system is static, so the idea of evolution is not always present. 

 
In the Bottom – Up Methods, the designer gives the system enough tools to solve the problem, 
like: path finding algorithms, image processing tools, some robotic methods…, but without 
giving it the solution explicitly, and the system needs to combine these tools and use them 
properly to find a possible solution, so it needs to be dynamic enough to cope up with the 
different problems and be capable of using the right tools at the right situation, so the designer 
do not have to assign to every single situation the proper action explicitly, and the system at 
the end is dynamic enough to be used in totally different environment with only little changes 
in the main structure. But one of the disadvantages of this method is that finding the solution 
is not always guaranteed, and converging for a solution is sometimes slow. 
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2.1.1. Top-Down methods 

2.1.1.1. Finite State Machine  
A Finite State Machine or (FSM) is an oriented graph with States, and Transitions between 
those states plus Actions.  

 

                                     
Figure 5: an FSM Structure 

A current state is determined by past states of the system, and it reflects the input changes 
from the system start to the present moment. A transition indicates a state change and is 
described by a condition that would need to be fulfilled to enable this transition. An action is 
a description of an activity that is to be performed at a given state. 
 
We can find FSM implementation in a vast number of applications, like in language 
processing tools: Spell Checking, Stemming, recognizing regular grammars…and in Pattern 
recognition, Classification and, of course, Video Games. 

 

+ Analysis of possible 
solutions 
 

+ Expert Knowledge 

Problem Specification 

(a) 

Pre-Defined Solution Algorithm 

Determination 

Potential Solutions 

Emergent structure conforms to 
specifications of the problem 

Stabilization 

+ Selection 
 
 

+ Auto Organization 

Figure 4: AI Techniques  
(a) The “Top-Down” approach, (b) The “Bottom – Up” approach. 

(b) 
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Figure 6: Example of an FSM  

Capable of detecting if a binary number is divisible by 5, the double circled state is the accepted one. 
 
The Turing machine which was described in 1936 by Alan Turing (Turing, 1936), is the base 
model of the current finite state machine, the only difference, is that in the Turing machine 
there is an extra tape to save the previous states, and the previous characters encountered, so 
the transitions depends on this tape and on the input at the same time, while in the current 
FSM model, what matters is the current state and the current input only, so it does not 
memorize the previous states. 
 
There is no specific algorithm to construct a finite state machine because at the end it depends 
on the environment, system designer and/or system specification…but the resulting FSM is 
always a state graph with the possible transitions and the actions associated. 

2.1.1.2. Decision Tree  
Decision Tree is a part of: Knowledge Discovery in Databases (KDD) research 

domain, which refers to the broad process of finding knowledge in databases, or in other 
words: Data Mining. 
 
A decision tree is a tree-like graph or model of decisions and their possible consequences, 
including event outcomes, resource costs, and utility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

L3 

L1 

L2 

K=y K=x K=x 

K=x K=y 

L4 

A = red A = blue 

B<4.5 B≥4.5 B<8.1 B≥8.1 
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L1 

K=x 

Decision 
node 
 
Leaf node 

Figure 7: Example of a Decision Tree 
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Decision trees are commonly used in operational research (project planning, designing the 
layout of a factory for efficient flow of materials…), especially in decision analysis to help 
identify the strategy which most likely will reach the goal. 
 
One of the most famous algorithms to build such decision tree is called ID3 (Quinlan, 1986) 
with its extensions like C4.5 (Quinlan, 1993) and C5.0. The basic idea is the same: the tree is 
constructed from a set of training data using the concept of information entropy, where the 
algorithm tries to choose the attribute that will potentially minimize the tree depth and create 
the purest leaves, i.e. containing majority of examples with the same class. These kinds of 
algorithms are used in Machine Learning problems for creating a classification tree out of the 
observations. 

2.1.1.3. Artificial Neural Network 
An Artificial Neural Network (ANN), often just called a Neural Network (NN), is a 
computational model based on biological neural networks. It consists of an interconnected 
group of simple processing elements (artificial neurons) that processes information through a 
simple computational approach: the propagation of the information in an interconnected 
network of simple processing units.  

 
The ANN’s can take endless structures based on the application we want. The three main 
layers are: the input neurons, the output neurons and the hidden layers; the flexibility of the 
ANN’s is in these hidden layers, where we can use multiple layers each one of them consists 
of the number of neurons that we want, and all of these neurons are interconnected with each 
other to form the network, this structure is optimized during the learning phase. 

 

                                    

Figure 8: Example of an ANN 

The power of the ANN’s comes from its ability (with the right structure) to learn everything 
the user wants it to learn, where during this learning phase the weights and the values of the 
connections between the neurons changes to achieve the minimum error committed between 
the output of the network and what the user excepts the output to be.  
 
So Neural Networks are non-linear statistical data modeling tools. They can be used to model 
complex relationships between inputs and outputs or to find patterns in data, or (and most 
importantly) learn anything the user wants it to learn. 
 
The ANN model that we have been talking about is called the Feedforward Neural Network 
which is inspired form the way the human mind works and store data.     
The first artificial neural network was invented in 1958 by psychologist Frank Rosenblatt 
(Rosenblatt, 1958). Called Perceptron, it was intended to model how the human brain process 
visual data and learn to recognize objects. 
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2.1.1.4. Expert Systems  
An Expert System, also known as a Knowledge Based System (KBS), is an attempt to 
reproduce the performance of one or more human experts, most commonly in a specific 
problem domain like in the medical domain, in math or engineering… and it consists mainly 
of 2 main components: the so-called Knowledgebase and the Inference Engine. 
 
The Knowledgebase: it is the digital representation of the human expert knowledge in the 
form of a series of rules, each one of these rules consists of: a condition and an action 
 
An example of such rules, in the medical domain: 

If symptom S1 and Symptom S2 Then Disease D7 
If symptom S8 and Symptom S3 and Symptom S1 Then Disease D6 

 
This Database could contain sometimes from 10 rules to even more than a 1000, depending 
on the subject being treated. 
 
The second most important component is the Inference Engine: it is the brain of the system 
with a specific set of goals: getting answers from the knowledgebase or formulating new 
conclusions…using a simple process: the system asks the user some simple questions 
(sometimes simple Yes/No questions) and from the answers  obtained plus the 
Knowledgebase, the Inference Engine tries to find the optimum rules that correspond to the 
user input, and after a certain time, it gives him the best conclusion that it found. 

 
The power of the Expert Systems comes from what is called Certainty Factors: whenever an 
expert writes a set of rules he supplies the system with a percentage to indicate how much he 
is confident about each one of these rules, and the Inference Engine uses these Certainty 
Factors to select the optimum rules to be used, and at the end of the process when it supplies 
the conclusions, it provides them with some new Confident Values deduced from the 
database. 
 
One of the first expert systems created was called DENDRAL; it was invented at Stanford 
University in the 1960s. The development of this system started in 1965; it uses the mass 
spectra or other experimental data together with a Knowledgebase of chemistry, to produce a 
set of possible chemical structures that may be responsible for producing the data. 
 
Another famous system was called: MYCIN it was based on DENDRAL and developed in the 
1970s at Stanford University as well, its Knowledgebase consists of ~600 rules, it would 
query the physician running the program via a long series of simple yes/no or textual 
questions, and At the end, it provides a list of possible culprit bacteria ranked from high to 
low based on the probability of each diagnosis, with its recommended course of drug 
treatment. 
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2.1.2. Bottom-Up” methods 

2.1.2.1. Genetic Algorithm (GA)  
It is an algorithm that mimics evolution and natural selection to solve a given problem, it is 
based on the concept of the Survival Of The Fittest introduced by Dr. Charles Darwin in his 
famous book On the Origin of Species first published on November 1859, where he talked 
about the idea of the natural selection process in our world and he made some key 
observations and some interesting theories, that became the main concepts in the GA’s: 

 Populations remain roughly the same size, with small changes. 
 Individuals less suited to the environment are less likely to survive and less likely to 

reproduce, while individuals more suited to the environment are more likely to survive 
and more likely to reproduce. 

 The individuals that survive are most likely to leave their inheritable traits to future 
generations. 

 This slow evolution process results in populations that adapt to the environment over 
time, and ultimately, after interminable generations, these variations accumulate to 
form a new varieties, and ultimately, new species. 

Now, each iteration of the evolution consists of 3 main stages: Evaluation, Selection and 
Modification. The Genetic algorithm starts with an initial population either created randomly 
or with a method related to the problem domain, each individual of this population is an 
abstract representation of a candidate solution in the form of a chromosome (a series of 
genes), the most sample representation is a series of bits. 

 
 
 
 
 
 
 
 

Figure 9: 2 examples of an individual (chromosomes) 

Evaluation: a fitness function is used to evaluate every individual of the population 
(sometimes we use several functions for this evaluation); this fitness function is based on the 
problem we need to solve, and it gives a numerical value for each individual. 
This numerical value could be the error committed by this chromosome; in this case the 
Genetic algorithm will try to minimize it, or it could be the gain expected; in this case the GA 
will try to maximize it. 

101011010101 

001011011101 
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Figure 10: an example of the iterations in a Genetic Algorithm 

Selection: the algorithm will choose a proportion of the current generation to breed and create 
a new generation; this selection is based on the fitness value, where fitter solutions are more 
likely to be selected, the most famous and well studied methods for selection are Tournament 
selection and Roulette Wheel Selection: 

 In Tournament selection a K number of individuals are chosen randomly from the 
current population and the best individual (based on its fitness) is kept, this is repeated 
several times until we get the number of individuals needed. 

 In Roulette Wheel Selection: it uses the idea of the Roulette in a casino. Each 
individual is represented on this roulette by a section proportional to it fitness function 
(the fitter it is, the bigger the sector is), and we do a probability simulation of the balls 
spinning for the selection. 
 

Modification: now it is time for generating the next generation using the individuals selected 
by the previous step, using two operations Crossover and Mutation: 

 Crossover: it mimics the way the genetic attributes are transferred from parents to 
children: a Crossover point is chosen (sometimes several points) on the chromosome 
and the genes are swapped between the two parents,   

 

Figure 11: Crossover 

The Crossover operation is regarded as a way of preserving the best genes for the next 
generations.  
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 Mutation: A random gene is chosen (sometimes several) on a random parent and will 
be mutated (changed) into other values. 

 

Figure 12: Mutation 

The idea behind the mutation is to maintain the diversity in the population and to 
avoid local minima by preventing the population of chromosomes from becoming too 
similar to each other (if we only used the crossover operator). 

 

Termination: there are several criteria for termination: 
 A solution is found that satisfies minimum criteria. 
 Fixed number of generations reached. 
 Successive iterations no longer produce better results. 
 Manual inspection. 
 Or a Combinations of the above. 

GA’s are useful and efficient when: 
 The search space is large, complex or poorly understood.  
 Domain knowledge is scarce or expert knowledge is difficult to encode. 
 No mathematical analysis is available.  
 Traditional search methods fail. 

Like Travelling Salesman Problem, Game Theory, and Bioinformatics… 
 
Genetic Algorithm is part of evolutionary algorithms (evolutionary computation), that was 
first introduced in 1954 by Nils Aall Barricelli, who was using the computer at the Institute 
for Advanced Study in Princeton, New Jersey, but this kind of algorithm became more 
common in the early 1960s, and the methods were described in books by Fraser and Burnell 
(1970) and Crosby (1973), Fraser's simulations included all of the essential elements of 
modern genetic. 
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2.1.2.2. Reinforcement Learning 
Reinforcement Learning is based on the idea that an agent (or an artificial system) is always 
in interaction with the environment surrounding it, so it can perceive the State of the 
environment, influence it by executing an Actions (also called: a Decision or a Control), and 
at the end, expects to receive some kind of Reward. 

 

Figure 13: Reinforcement Learning Cycle 

In this kind of systems, the long-term goal of this agent is to select the best action, based on 
the current state, which will maximize his reward system, so he always tries to map the world 
State with an Action that he thinks will get him the maximum Reward. 
 
The environment is typically formulated as a finite-state Markovian decision process (MDP) 
(Bellman, 1957), which is defined as a tuple <S, A, T, R >: 

 S : a finite set of States or possible worlds 
 A: a finite set of Actions. 
 T: S x A  P(S), a state Transition function, where P(S) is the probability distribution 

of all the possible states, so it models the probability to be in a new state (s`) when we 
execute the action (a) in the state (s). 

 R: S x A x S  R, a Reward function. 

So on every time t, we are in a state s(t)  from S, and the agent chooses the action a(t) from A, 
after executing this action we are in a new state s(t+1) (based on the transition function), and 
the agent gets a reward r(t+1) = R(s(t), a(t), s(t+1)), So the new state depends only on the old 
state and the action taken by the agent.  
Most of the time, the agent gets his reward when he achieves his objective, so in order to 
achieve it he may executes numerous successive actions, but sometimes he will not get the 
reward until the execution of the last action. 
 
There are two kinds of MDP’s: 

 Deterministic: where for each couple of (action, state) there is only one single possible 
transition to a new state. 

 Non-Deterministic (or stochastic): where for each couple of (action, state) there is a 
list of transitions to new states. 
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Figure 14: 2 examples of an MDP 
S = {1, 2, 3}, A = {a, b} (a) Deterministic, (b) Non-Deterministic 

 
What makes this kind of system different form the other Machine learning techniques is that: 
it does not use any kind of correct input/output examples, neither some kind of explicit action 
correction method; so everything is On-line and depends directly on the case being studied 
and on the environment that surrounds the agent, whose only way of knowing the benefits of 
an action is executing it directly on the environment.  
 
This system is really dynamic, that is why we need to manage the trade-off between the 
Exploration/Exploitation: 

 In Exploration (visiting uncharted territory): the agent always tries new actions, so his 
choice is not influenced by the reward that he thinks he would get, for this reason it is 
a totally random choice, which helps the exploration of the whole environment. 

 In Exploitation (based on current knowledge): the agent always chooses the actions 
believed to be optimal, based on the model built by him (the tuple <S, A, T, R>), this 
help the convergence to a Plan which he thinks it is optimal. 

The most common method for achieving this trade-off is the e-greedy method in which the 
agent chooses a random action for a fraction of the time (e), where 0 < e < 1. Typically, e is 
decayed over time to increase the agent's exploitation of its knowledge.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are several famous reinforcement learning algorithms and techniques like: Q-Learning, 
SARSA (State-Action-Reward-State-Action) and most importantly Learning classifier system 
or LCS. 
 
 

Exploitation 

Exploration 

e Value 

Time 

Figure 15: Exploration / Exploitation using the e-greedy algorithm 
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2.1.2.2.1.1. Learning classifier system 
LCS is a machine learning system, which uses reinforcement learning techniques plus genetic 
algorithms, to create this adaptive system that learns to perform the best action (or to take the 
best decision) based on the input from the environment surrounding it. The LCS consists of a 
collection of rules (each called classifier) just like an expert system, with the same structure 
for each rule <condition, action>, but the main difference between the learning classifier 
systems and the expert systems lays in the knowledgebase: while it is static in expert systems, 
it evolves in the LCS’s based on the reward that the system gets. This is realized by using the 
genetic algorithms as one of the engines for its evolution. 
 
The LCS was first introduced by John Holland in 1986 (Holland, 1986), and his model is the 
base structure for most of the LCS’s to follow, and it consists of: 

 Input interface: it is a set of sensors, and it generates a message which describes the 
environment that the system can perceive with these sensors. 

 Knowledgebase: the rules (classifiers). 
 Message list: it will hold all the messages from the input interface and from the 

classifiers as we will see later. 
 Output interface: it will execute the chosen action. 
 Reward distribution system: it will distribute the reward on the knowledgebase rules 

using algorithms like the Bucket Bridge algorithm. 
 The Genetic algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Holland model, the rules are binary so both the condition part and the action part (or what 
he calls the message part) are coded by a list of bits (0 and 1), example of a classifier: 

Condition (01011010): Action (10101) 
 

But that is not all; he added to the condition part a new symbol # which means whatever: it 
can take the value of 0 and 1 at the same time, in that way we will have rules more 
generalized than others; that is when their conditions part contains more #’s.  
As an example: The message 010101 can satisfy the following conditions: 010101, 0101#1, 
##0101 and even ######.  
So the condition alphabet = {0, 1, #} and the action alphabet = {0, 1}, to ease the work of the 
genetic algorithm during the Crossover and Mutation process (the evolution process). 

Environment 
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Figure 16: First Learning Classifier System model 
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The way things work inside this system is quite simple: the input interface will take the value 
of the sensors and code them in binary, after that this message is compared to the condition 
part of the rules, if it is fulfilled, then the rule can add its own message to the list of messages 
and so on, until when the inference cycle results in an action (or a decision), thus the output 
interface will execute it on the environment. After executing this action the system can 
receive a reward from the environment, this reward will be distributed on the rules that 
triggered it using the Bucket Bridge algorithm. 

Bucket Bridge algorithm (Goldberg, 1989)  
It is one of the most popular algorithms for the reward distribution process; it is used to share 
the reward between the rules that triggered the action, it consists of two parts: an auction and 
the reward distribution: 

 Auction: when the condition of a rule is satisfied, and the force of the rule is big 
enough, it will pay a percentage of its force and place it in the bucket (a tax). 

 Reward distribution: when a reward is received from the environment, this reward is 
added to the same bucket. The bucket content will be distributed on the rules that 
helped in filling it at the first place, and this sharing could be uniform or based on the 
time between paying the auction tax and receiving the environment reward. 

 
So the force of each rule will evolve based on the interaction of the system with the 
environment, but these rules are still static and their condition part and action part are not 
changing, that is why Holland has introduced the idea of using genetic algorithm; it will take 
the rules and treat them like a population of chromosomes, and by applying the Crossover and 
the Mutation operations we will have new rules that are most of the time better in modeling 
the interaction with the environment than the starting rules. And he did not have to modify the 
genetic algorithm, because at the end the rules are coded in binary, and he used the force of 
these rules as the fitness function, the only modification he did was: adding the # symbol to 
the mutation operator. 
 
And to make the system more adaptive there are several more enhancements like: 

1. If the rule is not activated for a long time it will start to lose a percentage of its force, 
and at the end if this force is weak enough, it will be deleted from the Knowledgebase. 

2. If the message sent from the input interface did not fulfill any rule, a new rule will be 
created randomly to satisfy this message, with a force equal to the average of either all 
the rules in the data base or the rules which has the same action (message); this is what 
we call Covering Operator. 

 
Based on this LCS system there are three learning classifier systems: the ZCS (Wilson, 1994), 
the XCS (Wilson, 1995) and the ACS (Stolzmann, 1998). All of them share most of the 
features of the Holland LCS but with a main difference: they all removed the message list, so 
the selected rule will execute its action directly. 
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I. ZCS or zeroth level classifier  
It is a Holland LCS but without the message list, other than that it operates in the same 
way: the input interface send the sensors value to the Knowledgebase, then a list called 
Matching Set is created which consists of the rules with the condition satisfied by this 
input, the rules in the Matching Set are grouped based on the actions (so all the rules 
with the same action will be grouped together) and the action of the group with the 
highest force will be executed, this group will pay the auction tax and wait for the 
environment reward to share the bucket contents using the same Bucket Bridge 
algorithm. The ZCS uses the same concept of genetic algorithm and the other 
enhancements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ZCS is often called strength based LCS, because what is matter is only the 
strength of the rule, and it has the capability of solving the same problems like Holland 
LCS and more, even with its simplified model. 

II. XCS  
It is a ZC, but the force of the rule is replaced by three parameters: the reward 
prediction, the prediction error and the fitness. The reward prediction estimates the 
reward perceived form the environment when the classifier action is executed. This 
parameter is used during the action selection. The prediction error is computed by 
comparison between the prediction and the real reward. Finally, the fitness measures 
the prediction accuracy: it is computed in function of the reverse of the error. It is used 
during the action selection and the genetic algorithm selection. 
 
So the XCS tries always to select the rules with the right prediction not the highest 
one: because sometimes the rewards that the system gets from the environment are not 
alike, so a rule can receive a high reward although it was used only once, in a ZCS this 
rule will be selected more often after receiving that reward although it might not be the 
best choice (other rules could be the best choice but they did not receive high 
rewards), while in the XCS this will not happen and the system will try to select the 
best rule not the one with the highest force, that is why it is called accuracy-based 
LCS. 
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III. ACS or Anticipatory Classifier System  
In this LCS each rule has a third part called the effect part, were the rule tries with it to 
predict the consequence of its action on the environment, so the classifier structure 
becomes: <Condition, Action, Effect>, this effect has the same alphabet of the 
condition part, that means: it could contains # in it, but here the # means that the value 
of the sensor will not change.  
In the ACS each classifier has two variables: the reward prediction and the 
anticipation quality, so the force of the rule, and its fitness, are based on these 2 
variables. The anticipation quality is always increased or decreased based on the 
difference between the real value of the sensors after the execution of the action and 
the effect part of the classifier. 
 

Next to these three main LCS’s, There are a lot of proposed modifications, like: 
 GCS or Generic System Classifiers (Olivier & Stephane, 2004): As we saw in all the 

previous LCS’s the classifiers are binary, so we will have to code everything in binary 
(0 and 1) in order to use them effectively, but that is not always possible, for that there 
are GCS’s where the condition part and the actions are really generic and can contain: 
integers, ranges, floats and sometimes strings… which makes the rules easier to read 
and easier to code, but in this case we will have to modify the GA’s and generalize the 
evolution operators in order to use them on these generic values. 

 MCS or Multiple Classifiers System (Kam Ho, 1992): this system is composed of 
several LCS’s of the same or sometime different types, in it, some LCS’s tries to 
model a behavior, while other LCS’s are the one choosing which LCS to be activated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 αCS (Sanza, 2001): in a game like football the entities should cooperate with each 
other, so a normal LCS’s cannot be used directly, because there are some team 
objectives that cannot be modeled with the use of a simple fitness function for each 
individual. So in the αCS each LCS can communicate with the others, they can share 
some classifiers, and when they cooperate with each other they will receive a greater 
reward. 

 
The LCS’s are used in a variety of applications like learning in the presence of noise, 
incorporation of continuous-valued actions, learning of relational concepts, on-line function 
approximation and clustering…

LCS 

LCS LCS 

Sensors 

Actions Actions 

Figure 18: MCS 
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2.2. Implementation of AI Techniques in video games NPC’s 
Most of the games these days uses the Top-Down methods to model the Non Playable 
Characters (NPC) behavior in video games like the behavior of enemies, allies, normal people 
that populate the environment….etc, because those methods are easier to use and to 
understand than the Bottom-Up methods, that is why most developers are using a combination 
of these Top-Down methods in order to achieve behaviors that feels as natural as possible, on 
the other hand, there is not a lot of video games that incorporate Bottom-Up methods in 
behavior modeling especially genetic algorithms, because these methods are still immature 
when it comes to video games logic but that did not stop some developers of incorporating 
them in some really important aspect of their games, I am going to write about a couple of 
examples of these AI techniques in video games. 

 Finite State Machines, decision trees, and expert systems are widely used in most of 
the current generation games, and from a point of view of an AI designer those 
methods are the same: they share the same main features and structure (we can 
represent the three of them with a set of rules each one of them has the structure of IF-
THEN-ELSE), but they differ in the way they are built, the way they visualize the 
final results, and the way they handle the input. They are widely used because they are 
easy to design and to visualize. Although sometimes they become troublesome when 
the graph in an FSM or a decision tree becomes really complex or the Knowledgebase 
is huge, but in the end they are not that hard to generate and to implement, and up-till 
now the results are really promising, examples: 

o Example of an FSM in a first person shooter called Bet on soldier developed 
by Kylotonn in 2005: 

 
Figure 19: an FSM from a video game: Bet on soldier 



State of the Art Implementation of AI techniques in video games NPC’s 

 
M2R-IT AVI IRIT 2008/2009  23 

o In 2005 Monolith Productions developed a game called F.E.A.R. (First Encounter 
Assault Recon) a first person shooter, they used an FSM to create really 
challenging enemies that take cover, adapt to the ever changing environment and 
to the behavior of the player, and the enemies were even capable of doing some 
really intelligent flanking maneuvers, and fight the player using team work 
behavior, Monolith won several awards in that year because of their really 
advanced AI. In 2009 they developed a sequel called F.E.A.R. 2: Project Origin 
with even more intelligent AI: far more challenging and aggressive using the same 
FSM’s concepts. 

o The Age of Empire series developed by Ensemble Studios always uses expert 
systems as the force driving the behavior of the enemy and it uses CLIPS as the 
Inference Engine, which is a public domain software tool, CLIPS stands for "C 
Language Integrated Production System” 

 
 As for neural networks, there are not a lot of games that uses ANN concepts in the 

behavior modeling, but one of the most famous one is Black & White developed by 
Lionhead Studios in 2001: The player takes on the role of a god ruling over an island 
populated by various tribes, he needs to protect his population and lead them into 
prosperity, beside that, he teaches a large animal-like creatures to do his/her bidding… 
This game combines neural networks and decision trees, in order to create this realistic 
experience. The game uses Perceptrons to learn the player desires based on reward and 
punishment, and combined with their own state, the creatures are capable of making 
decisions all alone, these decisions were memorized trough out the game to create a 
consistent experience, as for decisions trees, they were used to return the feedback to the 
player, generate beliefs about the types of objects…etc. In 2005 they developed a sequel 
called Black & White 2 where they used more reinforcement learning techniques: enemies 
in this game try to attack in different ways using different tactics, and waits for the results 
(reward and loses) of these different tactics, until they find the tactic that would win the 
battle. And they are dynamic: adapting to the changes of the player tactics, all of that 
created a feeling that the player is playing against real humans, not scripted ones. These 
artificial creatures in Black & White hold the Guinness world record for most intelligent 
beings in a game. 

 In 2008 Lionhead Studios developed a game called Fable II, it is an action role-playing 
game where the player controls a character that has a dog, one of the most notable 
invention of this game was that the dog is completely independent, the user cannot control 
it directly, he needs to interact with it like a real dog in order to control it. This dog AI is 
based on BDI architecture (belief, desire, intention) the same used in their Black & White 
games: 

o Desires: The desires of the creature are represented as a set of continuous numbers 
that evolve over time. These are used to select the next goal once the current one 
has been satisfied like eating, pooping, peeing, and possibly affection and eating, 
etc. 

o Actions: like moving in front of the player, lying down, protecting the player from 
other enemies, playing fetch with the player…  

o Beliefs: A decision tree is used for understanding objects (like in Black & White). 
And when you give feedback to the dog, it gets an extra data sample to build the 
tree. 

As a result, you can train your dog in the typical way, by rewarding it or punishing it by 
means of a basic YES, or NO emotions of your avatar, all of that to create this virtual 
being that feels more like a real dog than computer controlled dog. 
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There are lots and lots of more examples of the utilization of artificial intelligence methods in 
video games, just to name a few:  

 Prince of Persia developed by Ubisoft in 2008, it is an action adventure game, where 
the player is accompanied by a girl named Elika whom is controlled entirely by the  
artificial intelligence,  

 Far Cry 2 developed by Ubisoft in 2008, it is a first person shooter where enemies are 
purely dynamic, never spawned. Instead, they simply exist in the world, sometimes 
called in from other areas by signal flares. 

 Grand Theft Auto IV developed by Rockstar North in 2008, they have created a living 
and breathing simulation of New York City. This type of games is called a Sandbox 
where you can go anywhere, do anything, and interact with anyone, and it is heavily 
based on AI, so everything in the city is dynamic: the pedestrians, the traffic, the 
shops…. 

 … 
 
At the end, AI is becoming really important in video games, and that is noticeable with the 
growing number of games with Cooperative AI like Army of Two, Killzone 2, Gears of War 
2…Sandbox games like: Saints Row 2, Mercenaries 2…So developers are starting to 
experiment with new ways of implementing AI methods to create the best video game 
experience in the markets. 
 



State of the Art Fuzzy Logic 

 
M2R-IT AVI IRIT 2008/2009  25 

2.3. Fuzzy Logic 
In contrast to binary logic (normal logic) where a Boolean proposition can be either false or 
true (0, 1 respectively), in the fuzzy logic, the degree of truth of a statement can range 
(inclusively) between 0 and 1. So normally in binary logic the element either belongs to a set 
or not, but in fuzzy logic this membership is gradual and defined by a membership function, 
and this set is called a fuzzy set. 
Example: let us take a random set, like the definition of an object if it is “SMALL” or not: 

 In binary logic: if the object size is smaller than (5) for example then it is “SMALL” 
 small = true, but the problem is, if the size is (5.00001) it will not be considered 
“SMALL”  small = false, so the transition is really rough. 

 In fuzzy logic: we could define a membership function where the size (4) is 
considered 75% “SMALL” and the size (5) is 50% “SMALL”, in this way we have a 
transition between the states a lot smoother with this fuzzy set. 
 

               
Figure 20: Membership functions 

The main use of these concepts is during the fuzzy logic reasoning, where (like in knowledge 
base systems) we have rules of the type: 

If variable is property Then action 
 
But in this case, the condition part of the rule is not Boolean (true or false), but rather how 
much the variable belongs to the property needed, let us take a simple temperature regulator 
that uses a fan, the fuzzy rules could look like this: 

If temperature is very cold  Then stop fan 
If temperature is cold   Then turn down fan 
If temperature is normal  Then maintain level 
If temperature is hot   Then speed up fan 

As you may have noticed there is no “if - then – else” structure, All of the rules are evaluated, 
because the temperature might be "cold" and "normal" at the same time to different degrees, 
and the final action taken depends on these degrees. 
 

 
Figure 21: 3 fuzzy sets for the temperature: cold, warm and hot 
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The AND, OR, and NOT operators of Boolean logic exist in fuzzy logic also, usually defined 
as the minimum, maximum, and complement. So for the fuzzy variables x and y: 

 NOT x = (1 - truth(x)) 
 x AND y = minimum (truth(x), truth(y)) 
 x OR y = maximum (truth(x), truth(y)) 

There are even operators not found in normal logic like the average, median…. 
 
Fuzzy logic is used in vast types of applications these days like: Air conditioners, Washing 
machines and other home appliances, Digital image processing, Pattern recognition and Video 
game artificial intelligence…and it was first proposed by Lotfi Zadeh. He published his 
seminal work on fuzzy sets in 1965, in which he detailed the mathematics of fuzzy set theory. 
In 1973 he proposed his theory of fuzzy logic. 
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2.4. Imitation 

2.4.1. Introduction 
Imitation is a really powerful tool that the human brain uses to augment its knowledge and to 
discover solutions, because from an abstract point of view, the imitation strategy can reduce 
the search space for the appropriate solution. That is why the imitation is looked at as a way 
of enhancing machine learning in multi-agent systems: where the agent uses the knowledge of 
the past cooperative teachers, or other different agents to augment its ability of learning how 
to survive, to operate in the same environment and/or how to interact with it. 
 
In the machine learning by imitation we have the agent who is the observer, and one or 
several other agents with the role of mentors, and there are two main types of imitation: 

 Explicit imitation: the mentors take the role of the teachers (expert ones), and their 
goal is to make the observer imitate them, by directly teaching him what they think the 
right set of actions and decisions are, but in this case the main assumption is that the 
mentors are cooperative and ready to share their knowledge with the observer, and 
that the system is capable of incorporating this kind of direct communication, 
(Atkeson & Schaal, 1997; Lin, 1992; Whitehead, 1991). 

 Implicit imitation: in this case there is no direct communication between the observer 
and the mentors, and the agents are not forced to play the role of the teacher explicitly, 
on the contrary, the observer tries to learn simply by watching the behavior of other 
agents. This is important because sometimes it is not possible for a mentor to alter its 
behavior to teach the other agents, or it could be unwilling to do that because they are 
in a competitive situation, (Price, 2003; Métivier, 2004; Thurau, Sagerer, & 
Bauckhage, 2004; Tambellini & Sanza, 2006). 

 
There are a lot of other differences between the two strategies, like in implicit imitation the 
agent is not forced to imitate the mentors 100%: he can use the observations he made to 
enforce his own system, while in explicit learning the observer is expected to be whatever the 
mentors wants him to be. Another difference is that in implicit imitation the objectives of the 
mentors can differ from those of the observer and that is why the imitation cannot be exact, 
and the observer in this case needs to imitate the more interesting behaviors concerning its 
proper objectives, but of course the closer they are to his objectives, the more utility can be 
derived from implicit imitation. 
 
We need to distinguish between two settings: homogenous settings where the set of action and 
abilities between the observer and the mentors are the same, in this case the mapping between 
the mentors and the observer actions and decisions is straight forward while in heterogeneous 
settings, there might be differences, which could lead to odd situations where the mentor is 
capable of interacting with the environment differently or he has different capabilities, in this 
case the observer needs to make adjustments during the imitation process to adapt everything 
to his own model. 
 
Now, in any kind of imitation there are 3 main steps: Recording stage, Machine learning stage 
and the Re-playing stage. 
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2.4.2. Recording Stage 
In this stage, each researcher records a different kind of data, which is based on the type of the 
environment being used, the type of imitation, capabilities of the agent…etc 
- In Bob Price (Price, 2003) research, the environment that he was testing on is a simple 2D 
grid with different types of cells: empty, obstacle, start, finish…He was using some of the 
famous maze configurations like: wood1, maze4… 

 

                                         
Figure 22: Maze4 and the optimal behavior 

In this environment, the objective of the agent is to reach the finish cell, while only perceiving 
the 8 cells surrounding him. 

 
Figure 23: Agent perception 

In his research, Price uses the implicit imitation strategy with homogenous settings, with only 
one mentor. By definition this mentor is not cooperative but he has the same objectives as the 
observer, this mentor is either controlled by the user directly or a by a system of machine 
learning by reinforcement, and of course in the same environment we have the observer doing 
the imitation. As for the data being registered; it is the state of those 8 cells. 

 
- Marc Métivier (Métivier, 2004): he uses the same environment like Price, with the same data 
being recorded but he introduced a new concept: guidance interaction. In Price research the 
two agents can exist in the same time on the grid (although not interacting with each other but 
it is possible), while in Métivier research an external agent  can take over the control of the 
observer, which means we have only one agent who is the mentor and the observer at the 
same time. 

 This agent can be controlled by either the user (the mentor) or controlled directly by   
the system doing the imitation (the observer). 

 At any moment during the simulation, if the user stops controlling the agent, the 
observe takes control directly. 

Thus both the mentor and the observer share the same observations of the environment and 
the behavior transfer between them is straight forward. The imitation in Métivier research is 
implicit with homogenous settings, and with the same objectives. 
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- In (Thurau, Sagerer, & Bauckhage, 2004): they use a famous FPS (First person shooter) 
game for their research, called Quake II from ID software1, where users shoot each other in a 
3D environment (no teams, each player is on his own), and there are weapons, power-ups and 
health packs laying all around the arena; the idea behind using this kind of popular game is 
that users normally organize what they call LAN-party where hundred or sometimes 
thousands of gamers compete against each other at the same time, so the amount of data is a 
lot more significant from an in-house developed game, on top of that, most of the players 
have developed some really important expertise for their research.  
 

 
Figure 24: Quake 2 environment 

They use an implicit imitation strategy with several mentors (the gamers) with homogenous 
settings, those gamers were not aware that they were recording their behavior, so in machine 
learning terms: they were not cooperative. The data they were registering contains 
information about the exact locations (x, y, z) the player assumed, nearby items and other 
players. Temporary entities like sounds and flying projectiles are also included. They did not 
have to visually analyze the game scene, since all necessary information was already available 
on a cognitive higher level. 
 
- In (Tambellini & Sanza, 2006): they use a similar approach (an FPS game), but with a in-
house developed game thanks to Kynapse Artificial, which is an Intelligence middleware 
framework2, another difference is that the user does not control the virtual character (avatar) 
directly, but he gives it high level orders only like: Wander, Follow, Attack, Flee, Hide,....they 
use an implicit imitation strategy with also homogenous settings, and the recorded data was: 

 Number of visible enemies: the number of enemies the character can see according to 
a fixed visibility distance accuracy and vision cone angle. 

 Number of enemies around: the number of enemies seeing the player (at front or at 
back). 

 Player life (between 0 and 100). 

 
                                                 
1 http://www.idsoftware.com/ 
2 Kynapse Artificial Intelligence middleware, http://www.kynogon.com 
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Figure 25: Testing environment in (Tambellini & Sanza, 2006) 

2.4.3. Machine Learning Stage and Re-Playing Stage 
Now after the recording stage, we need to use this data recorded the proper way: 
- Bob Price: in his research, imitation is an extension of reinforcement learning, and may be 
considered as a knowledge transfer process between those two agents, so the mentor data 
(acquired by the previous stage) is used to build the environment finite-state Markovian 
decision process (MDP) from the mentor point of view of course, (which, as we saw, is 
defined as a tuple <State, Action, Transition, Reward >).  
After that, when the observer is building his own representation of the MDP environment 
(that mean his own transition function) in the re-playing stage, he is incorporating the mentor 
model in his decision for the next action, the paradigm here is that the mentor behavior should 
be somehow optimal, so when the observer uses the transition function of the mentor to 
decide the next action, this action should serve his own objective. But sometimes this is not 
the case, thus the blind imitation can really slow down the progress of the observer, that is 
why in Price research, even if the behavior of the mentor is not optimal, the observer is going 
to try to use it at first, but if he finds that it is not serving him well (based on the reward he is 
receiving from the environment), he is going to lower his dependency on the mentor model, 
and start exploring other options, so he could suppress the mentor by finding the optimal 
policy for accomplishing his objectives (in this case reaching the finish cell). 
 
- Marc Métivier: in his research, the imitation is based on reinforcement learning too, he even 
consider it as reinforcement learning but without reward. He uses learning system classifier 
(LCS) as a base for the imitation, with 2 main approaches: without a mentor model, or with a 
mentor model, and in both ways and during the recording stage, a rule based system is 
deduced from the mentor behavior (set of rules with their force); the difference lies in the re-
playing stage. 

- Without a mentor model or Guidance only: in this case we have an LCS to represent 
the observer behavior, and during the LCS action selection process, the mentor 
imposes his action on the observer, that means: if there is a rule activated in the 
mentor rule base system (if the condition part of the rule is met), this rule action will 
always be executed no matter what is the answer of the observer LCS, and if there is 
nothing activated then the LCS will behave normally. 
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Figure 26: Marc Métivier Guidance only system 

- With a mentor model: here we have a two LCS’s (or what they call a DoubleCS 
system): one for the observer and the other for the mentor.  
The mentor LCS is actually the rule based system from the recording stage with the 
gain or confidence…and it evolves only during the recording stage, as for the observer 
LCS it is totally independent and it evolves during the re-playing stage, and here we 
have also two other possibilities, when it comes to selecting the most consistent action: 

 
1 – Each LCS will calculate the matching set of actions in the normal way, then 
another step is used to combine both matching sets (if the same action is selected in 
both LCS’s, the system will take the max of the force), but only the observer LCS will 
be updated based on the reward. 

 

 
Figure 27: Marc Métivier imitation system with mentor model (1) 
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2 – The same idea of the previous system, but here the system will select only one 
action (the one with the max force) from the mentor LCS and it will add it to the 
matching set of the observer LCS, so this action will have the same probability to be 
selected like the other actions. 

 

 
Figure 28: Marc Métivier imitation system with mentor model (2) 

- (Tambellini & Sanza, 2006): they built a decision tree based on the recording stage data 
using the ID3 algorithm, were the stopping condition is either the depth of the tree, or the 
number of examples each leaf is covering (to avoid over fitting when the leaf covers only 2-3 
examples), with one hypotheses: The recording time is only 10 minutes, so that the gamer 
does not have time to change his way of playing, thus avoiding incoherence during the tree 
building, so in this way they avoided the problem of contradiction (two different actions with 
the same kind of object observed), which would have bad effects while the tree is being 
constructed. 

 
  

Figure 29: Resulting Decision tree in (Tambellini & Sanza, 2006) 
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- (Thurau, Sagerer, & Bauckhage, 2004): they were concentrating on two different aspects of 
imitation: first, producing natural reactions, and second, producing natural movements.  
For producing natural reactions or reactive behavior (which is the reaction of the observer 
based on the audio-visual perception) like: aiming and shooting on an enemy, predicting the 
enemy place based on audible cues, and some movement like jumping, hiding…And for this 
behavior, they use Neural-Networks, and more exactly Multi layered Perceptron (MLP) using 
the examples of the recording stage, with several networks, each one representing a different 
situation the mentors has encountered and sometimes a different action. But they found that 
for long term goals (like achieving high killing rate, surviving for long time…), these goals 
should be treated separately and be implemented independently from the imitation process, 
because they depend more on the motive of the player and his objectives.  
As for producing natural movement or Motion Modeling, they were breaking the movement to 
its primitives by using clustering algorithms like the k-means to regroup similar primitive 
motions with each other, then combining several motion primitives to achieve more natural 
movement based on direct observations, and they were capable of managing 20-30 motion 
primitives per second. 
In the re-playing stage: the agents were making more natural motions and even doing some 
movements learned from experienced gamers (like climbing up the stairs and jumping toward 
a weapon that cannot be reached in the normal ways).  
 

 
Figure 30: MLP networks in (Thurau, Sagerer, & Bauckhage, 2004) 

Each network could represent a different action or decision. 

2.4.4. Conclusion 
In all of these researches, the imitation was really speeding up the machine learning stage and 
sometimes eliminating the tedious work of scripting in video games, or if not, it was not 
making the process slower, and one of the important conclusions: the implicit imitation model 
is more intuitive because it does not impose anything on the mentors (like changing their 
behavior to teach the other agents…), so at the end the imitation is a way the observer 
accelerates its learning process.
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Chapter 3: Imitation Experience 
 
Cette étude est basée sur le processus d'imitation dans le contexte des jeux vidéo, plus 
exactement : l’imitation implicite dans les MMORPGs (Massively multiplayer online role-
playing game), et nous testons notre système d’Intelligence Artificielle dans une simulation de 
ville 3D. 
 
L’imitation est implicite, et elle est basée sur le concept de Métivier : l’interaction par 
guidage (Métivier, 2004), où, à n'importe quel moment de la simulation, l'utilisateur peut se 
connecter à l'environnement et contrôler l'avatar (sa représentation dans le monde virtuel), 
et, quand il se déconnecte, le système va prendre le contrôle de cet avatar et le processus 
d'imitation va commencer. 
 
L’environnement est une simulation de ville 3D, avec différents types d'objets et de surfaces. 
De plus nous utilisons le moteur physique Bullet pour animer ces objets et simuler les 
interactions. 
 
Comme tous les systèmes précédents, il y a 3 étapes : l’enregistrement, l’apprentissage et le 
rejeu. 
L’enregistrement : dans cette étape nous simulons la perception humaine : notre avatar a un 
champ de vision sous la forme d’un cône 3D, il peut voir tous les objets présents dans cette 
zone, et il peut même détecter le type de surface sur laquelle il évolue. 
A chaque pas de simulation, l’avatar construit la liste des objets avec lesquels il peut 
interagir, chacun de ces objets ayant ses attributs qui définissent son état. 
 
Donc comme on peut le constater, nous avons l'état des objets, chacun avec plusieurs 
attributs, avec des types de données hétérogènes (mètre, degré, Booléen ....), ce qui va rendre 
la phase d'apprentissage complexe et difficile, c'est pourquoi nous utilisons le concept 
d'ensembles flous pour représenter ces attributs. 
L’idée d’utiliser l’ensemble flou est très simple : unifier tous les types de données c'est-à-dire 
remplacer la valeur de chaque attribut par une variable bornée entre [0..1] qui représente 
l’importance  de cet attribut pour notre avatar.  
 
Avec l’utilisation de la logique floue, nous avons éliminé l’une des complexités du système, et 
pour le simplifier encore plus, nous avons ajouté un attribut supplémentaire qui permet de 
regrouper certains objets, par exemple : si l’avatar voit 4 objets du même type à sa droite, 
nous allons choisir le plus proche comme un représentant de ce groupe et changer la valeur 
de son attribut Count : de la valeur par défaut qui est 0.5 normalement (c'est-à-dire 1 objet), 
à une valeur de floue qui reflète l'importance de 4 objets pour notre avatar. 
Enfin, à chaque pas, l’avatar fait une observation au format : Liste d’état des objets + 
l’action effectuée + un ID 
Les objets dans cette liste sont triés selon les types d’objets et leur orientation, et un ID est 
généré à partir de cette liste, cet ID représente les objets dans cette liste, et nous l’utilisons 
dans la plupart des étapes suivantes, parce que les comparaisons entre des chiffres sont bien 
plus rapides que les comparaisons entre des strings. 
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L’apprentissage : c’est l’étape principale de notre système, et les opérations qu’elle utilise 
sont : Filtrage des données, l’apprentissage : Espace de Version, Génération de la force des 
règles, Fusion des règles. 

 Filtrage des données : dans chaque pas de simulation, l'avatar va faire une 
observation, qui s'élève à un grand nombre d'observations dans un petit laps de temps 
(la simulation fonctionne avec 60 images par seconde en moyenne), pour ça, nous 
allons comparer l’observation de l’image courante, avec l’image précédente, et nous 
la prenons en compte si elle est différente. En revanche, pour ne pas perdre de 
données, nous enregistrons la durée pendant laquelle l’observation ne change pas. 

 Espace de Version : le cœur de notre système est un algorithme d’apprentissage qui 
s’appelle L’espace de version ou EV (Mitchell, 1997). Cette algorithme construit deux 
type d’hypothèses GB et SB, et nous nous intéressons à SB qui consiste à construire 
les hypothèses les plus spécifiques et cohérentes : les hypothèses qui couvrent 
seulement les exemples positifs, et si elles sont réduites un peu plus, elles 
deviendraient incompatible parce qu’elles vont exclure un de ces exemples positifs, la 
construction de ces hypothèses commence avec l’hypothèse la plus spécifique : le 
premier exemple positif, après ça, pour chaque exemple positif, l’algorithme 
généralise les hypothèses un peu pour couvrir ce nouvel exemple, par contre pour les 
exemples négatifs, il va éliminer les hypothèses qui le couvrent. En résumé il 
commence à partir des hypothèses plus spécifiques vers des hypothèses plus 
générales. 

Mais ce processus d'élimination de l'algorithme original peut avoir des effets négatifs 
sur notre système, par  exemple: 
Si ont prends deux règles, d’un EV : 

Si Objet = véhicule et distance entre [0.3, 05] Alors marcher  
Si Objet = véhicule et distance entre [0.1, 02] Alors arrêter  

Et une nouvelle observation :  
Objet: véhicule, distance: 0.4, action: arrêter  

Normalement l'algorithme d’espace de version va éliminer la première règle et la 
deuxième règle sera: 

Si Objet = véhicule et distance entre [0.1, 04] Alors arrêter  
Mais de cette manière, nous avons perdu des informations vraiment importantes, de 
l'autre côté, si nous avons essayé de résoudre le problème dans la même VS, ce qui 
signifie avoir d'intersection entre les règles: 

Si Objet = véhicule et distance entre [0.3, 05] Alors marcher  
Si Objet = véhicule et distance entre [0.1, 04] Alors arrêter  

Cette contradiction va affecter gravement l'algorithme d’espace de version au cours 
des prochaines généralisations et éliminations. 
Modification d’espace de version : nous proposons une modification sur l’algorithme 
original pour éviter les problèmes précédents : en cas de contradiction, nous allons 
créer un autre EV avec le même ID, cet EV va traiter tous les exemples qui causent les 
contradictions, et s’il y a de contradiction dans ce nouvel EV, nous allons créer un 
autre EV. Enfin, le système peut contenir 2-3 espace de versions avec le même ID. 
Comme ça, nous avons maintenu le montant maximal de l'information, et comme effet 
secondaire de cette modification, nous avons pratiquement supprimé l'étape de 
l'élimination de l'algorithme original. 
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 Génération de la force des règles : cette force sera basée sur deux critères : le 
pourcentage d’observations que chaque règle recouvre, et la durée de chaque 
observation. 

 Fusion des règles : l'idée de cette étape est de minimiser le nombre de règles : le 
principe est de toujours conserver la règle la plus générale. 

Le rejeu : à partir de l’étape d’apprentissage, nous avons construit une base de règle qui 
modélise le comportement du mentor, nous allons utiliser cette base de règle dans un système 
de classeurs : un ZCS, mais un ZCS générique parce que les règles ne sont pas binaire. Nous 
allons utiliser un seul LCS pour représenter le comportement de l’observé, tout comme le 
modèle de Marc Métivier en l'absence d'un mentor (guidage seulement) (Métivier, 2004), de 
cette façon, les décisions que le mentor a prises au cours de la phase d'enregistrement 
influence directement le comportement de l'avatar. 
Observations : les observations suivantes seront basées sur l'imitation de notre mentor, 
quand il est en train de traverser la rue, et nous avons testé notre système en trois différents 
scénarii : 

 Scénario 1 : Nous avons supprimé tous les véhicules et autres piétons, donc les rues 
étaient vides. 

 Scénario 2 : Nous avons ajouté les véhicules. 
 Scénario 3 : Nous avons ajouté les piétons, et l'environnement contient tous les objets. 

 
Résultat : 

o Scénario 1 : l’avatar a compris l’importance des feux de trafic, et il a commencé à 
s’arrêter quand les feux de trafic est rouge. 

o Scénario 2 : Étant donné que le nombre de véhicules est beaucoup plus important 
que le nombre de feux de trafics, les véhicules ont plus d’influence que les feux de 
trafic. C'est pour cela que parfois il traverse la rue quand il n'y a pas de véhicules 
alors que le feu était rouge. 

o Scénario 3 : même résultat que scenario 2 car les autres piétons sont beaucoup 
plus nombreux que les feux de trafics. 

 
En plus des résultats précédents, nous avons fait plusieurs observations : 

 Dans tous les scénarios précédents, notre système converge vers le même nombre de 
règles (≈13 règles en scenario 1, ≈40-50 en scenario 2, ≈170-180 en scenario 3). 

 Plus l'environnement est complexe, plus nous nous avons un problème de bruit : le 
système devient moins capable de découvrir les objets importants, tous les objets ont 
le même degré d'importance, ils ont tous été capables d'influencer le comportement de 
notre avatar par la même force. 

Conclusion : notre système a été capable d'imiter le mentor, mais nous avons essayé de créer 
un système général, pour cela nous avons le problème de bruit, ou parfois l’avatar prend des 
décisions qui apparaître illogique, mais il ne faut pas oublier qu’il prend en compte tout ce 
qu'il voit. Mais en général, l'imitation a été un succès et le système final par bien modéliser 
les comportements du mentor. 
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Implémentation dans un MMORPG : Un MMORPG ou Massively multiplayer online role-
playing est un genre des jeux de rôles où le joueur contrôle un avatar dans un monde virtuel 
persistant : le monde continue d'exister et évoluer alors que le joueur est hors jeu, ce qui crée 
un monde qui n’arrête pas d’évoluer. L’idée c’est d’utiliser notre système pour que le monde 
soit toujours peuplé par des avatars : au moment où l’utilisateur se déconnecte, notre système 
prend le contrôle de l’avatar et essaye de rencontrer des nouvelles personnes ou de gagner de 
l’expérience pour l’utilisateur. 

3.1. Introduction 
This paper is based on the imitation process in video games context, more exactly implicit 
imitation in an Massively multiplayer online role-playing game or MMORPG (more about 
this type of games later), and the final AI imitation system will be first tested in a city 
simulation.  
So the imitation is implicit, and it will be based on Métivier concept of: guidance interaction 
(Métivier, 2004), where, at any moment of the simulation, the user can connect to the 
environment and control the Avatar (his representation in the virtual world), and when he 
disconnects, the system will take control of this Avatar and the imitation process will begin, 
so we have only one mentor who is the observer at the same time, and they both have the 
same capabilities (homogenous setting) and share the same objectives. 

3.2. The environment 
The test environment will be an in-house developed 3D city simulation, with different kinds 
of objects like vehicles, pedestrians, traffic lights…and different kinds of surfaces like 
sidewalks, crossroads, streets…We use 3D models to represent these objects and surfaces plus 
we use also MoCap (Motion Capture) for the pedestrian’s movements, because it is more 
natural this way. 

 
Figure 31: the 3D city Simulation 

This simulation is as close as possible to reality and this was achieved by using physics as the 
force that drives most of these objects and interactions, like the interactions between the 
pedestrians and the environment (going up the stairs, bumping with each others), the 
movement of the vehicles (suspensions, breaking forces)…..etc all of that thanks to an open 
source physics engine called Bullet3.

                                                 
3 http://www.bulletphysics.com/ 
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But what are the benefits of using this kind of simulations? The idea behind using this kind of 
environment is: it is complex enough to test the imitation system before using it in a more 
complex video game, and because it is in-house developed, there is no need to understand 
how things work in the game engine before implementing the system.

3.3. Machine learning by imitation system 
Like the previous systems, we have the same 3 main stages. 

3.3.1. Recording stage 
During this stage, we simulate the way the human perception works, so our Avatar has a field 
of view in the form of a 3D Cone, just like humans, everything inside this cone the Avatar can 
see, and on top of that he can even sense if he is on a surface like a crossroad or a sidewalk… 

 
 
 
 
 
 
 
 
 
 
 

 
 
So at any given time during the simulation we have a list of interesting objects that the Avatar 
can interact with.  Each one of these objects has its own set of attributes that represent its 
proper state. Some of these attributes are general and common between all the simulation 
objects like: 

 Type and Name of the object. 
 Distance: the distance between the Avatar and this object, measured using the distance 

units of the OpenGL4.  
 Orientation: is the object in front of the Avatar or at his right or left, this is a variable 

with 3 states. 
 Angle: the angle between the velocity vector of our Avatar and the velocity vector of 

the object if he is a moving one, measured in degrees. 
 … 

 
And we have also the object specific attributes like: 

 For surfaces: is the Avatar on this surface? , this is a Boolean. 
 For traffic light: is it red? Also a Boolean. 
 For vehicles: speed, force, weight, each one with its respective unit. 
 … 

 

                                                 
4 The unit in OpenGL could be meters, inches, kilometers, or leagues…it is up to the user to define the relation 
between the units in OpenGL and their meaning in the real world. 

Figure 32: Avatar Field of View 
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So as we can see, we have the state of the objects, each with lots of attributes, with really 
different units (distance, degree, Boolean….), and this is going to make the learning stage 
complex and difficult, that is why I use the fuzzy sets concept to represent these attributes. 
The idea behind using the fuzzy sets concept is to unify the units of all the attributes, by 
replacing all of these different values of these attributes with only a value from the interval 
[0..1], this value will represent the importance of this attribute to the Avatar. 
 
Let us take an example: The Distance, the more the value of this attribute is close to 1 the 
more the object is closer to our Avatar, that means it is more important, and this importance 
depends on the type of the object of course, thus the membership function for a static object is 
not the same for a moving one. 
 
 
 
 
 
 
 
 
 
 
 
 
And this is the same for the other attributes: 

 Orientation: can only take the following values: left = 0, in front = 0.5, right = 1. 
 Angle: a value between [0...1], it has the same significance of the distance. 
 For the Boolean attributes: either 0 or 1. 

 
So by using this kind of representation I have eliminated one of the complexities of dealing 
with different kinds of objects and attributes. Now, to lower the complexity of the recorded 
data even more I used an extra attribute that represents the Count: so for an example if the 
Avatar sees 4 objects of the same type on his right, I am going to choose the closest one as a 
representative of this group and I am going to change the value of its count attribute, from the 
default value which is 0.5 normally (that means 1 object), to a fuzzy value that reflects the 
importance of 4 objects to the Avatar. 
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Type Value Interpretation 

Distance 0.980000 Really close 

Orientation 0.500000 In front 

Angle 1.000000 180 degree 

Count 0.861496 4 cars 

Advancing 0.000000 no 

Fuzzy Value 

Real Value 

1 

0 

0.5 

b 
a Mid-Point 

Figure 33: The Distance membership function 
Moving object (a), Static object (b) 

 

Figure 34: Example of fuzzy set utilization 
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So, in each frame, the Avatar makes an observation (the recorded data) that consists of:  
A list of objects state + the action carried out + an ID. 

 
Before talking about the ID, I should mention that inside this list, objects are sorted based on 
two criteria: their type, and their orientation. In other words, if the Avatar sees the same 
objects and he is on the same surface but the order of his perceptions is different, the final list 
of objects state is always the same, that will be really helpful during the comparisons in the 
later stages either with the previous observations or with the condition part of the resulting 
rules. 
 
Now, the ID; it is a numerical representation of the objects inside the list of objects state, and 
it is generated based on the object type, for an example: an object with the type = vehicle, the 
system  will assign always the number 2, for the pedestrians the system will assign the 
number 5 and so on. So if I have two vehicles and one pedestrian the ID will be 225, and 
because the objects are always sorted, I will always have the same ID (225) for any kind of 
configurations of these three objects, this way I reduced the complexity of the comparison of 
the two lists of objects (comparison of strings) into just comparing integers, thus optimizing 
lots of steps (we will see the importance of the ID in most of the following steps). 
 
An example of an observation: 
Objects state: 
Name = TRL1, Type = TrafficLight  
MType = Distance, MValue = 0.980000, MType = Orientation, MValue = 0.500000,  
MType = Angle, MValue = 0.153760, MType = Count, MValue = 0.500000,  
MType = isred, MValue = 1.000000. 
 
Name = Car1, Type = Vehicle  
MType = Distance, MValue = 0.564444, MType = Orientation, MValue = 0.500000,  
MType = Angle, MValue = 0.914184, MType = Count, MValue = 0.551247,  
MType = Advancing, MValue = 0.000000. 
 
Name = Car1, Type = Vehicle 
MType = Distance, MValue = 0.624444, MType = Orientation, MValue = 1.000000,  
MType = Angle, MValue = 0.914184, MType = Count, MValue = 0.861496,  
MType = Advancing, MValue = 0.000000. 
 
Name = Surface, Type = CrossRoad  
MType = Distance, MValue = 0.857778, MType = Orientation, MValue = 0.500000,  
MType = Angle, MValue = 0.000000, MType = Count, MValue = 0.500000,  
MType = on, MValue = 0.000000. 
 
Name = Surface, Type = SideWalk 
MType = Distance, MValue = 0.997778, MType = Orientation, MValue = 0.500000,  
MType = Angle, MValue = 0.000000, MType = Count, MValue = 0.500000,  
MType = on, MValue = 1.000000, 
 
ID = 23346 
Action = STOP      
         Common Attributes 
         Specific Attributes
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3.3.2. Machine Learning stage 
This is the main stage in our system, and it consists of 4 sub-stages: Data Filtering, Machine 
learning (Version space algorithm), force generation and rules fusion. 

3.3.2.1. Data filtering 
As we saw in the previous step, each frame the Avatar will make an observation, which 
amount to a huge number of observations in a small period of time (the simulation runs with 
60 frames per second as an average), so in the filtering stage we compare the data of the 
current frame with the observation of the pervious frame, and if they match completely, or the 
difference is negligible, we will not process the current frame observation, but by doing that 
we could lose important information, so we added a new variable to the observation data 
which will represent the time of the observation: the time during which this observation 
(objects state, action, ID) stayed the same, this will be helpful during the force generating of 
the rules. 

3.3.2.2. Machine Learning: Version Space algorithm 
This is the core of our system, and it is based on a famous machine learning algorithm called 
Version Space, or VS (Mitchell, 1997). 
 
Let us take a 2D coordinates universe with positive and negative examples, with a clear 
objective: finding the rectangle that separate those two kinds of examples completely. 
 

 
Figure 36: Features Space with examples 
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Figure 35: Machine learning Steps 

Negative Example 

Positive Example 



Imitation Experience  Machine Learning stage 

 
M2R-IT AVI IRIT 2008/2009  42 

The idea of the VS algorithm is quite simple; it will try to create two types of hypotheses: 
 The most specific and consistent hypotheses (i.e., the specific boundary SB): which is 

the hypotheses that covers the positive examples only, and if it is reduced any further, 
it will exclude one of those positive training examples, and hence becomes 
inconsistent; in our example it is the smallest rectangle. 

 The most general and consistent hypotheses (i.e., the  general boundary GB): which is 
the hypotheses that covers the positive examples also, but tries to cover as much as it 
could of the remaining feature space without including any negative example 
otherwise it will become inconsistent; in our example it is the largest rectangle. 

 

 
Figure 37: Version Space Result 

So, in our example, we will have two different rectangles that separate the positive and 
negative examples completely. 
The notion of Version Spaces was introduced by Mitchell in 1997 as a framework for 
understanding the basic problem of supervised learning within the context of solution search.  
 
In the specific boundary (SB) construction, the algorithm starts from the most specific 
hypotheses, which is the first positive training example that it encounters, then during the 
course of the algorithm, for each positive example it will generalize the hypotheses a little bit 
to cover this new example; as for the negative examples, it will eliminate the hypotheses that 
cover it, so it starts from the most specific hypotheses up to a more general ones. 
 
As for the general boundary (GB) construction, it is quite the opposite, the algorithm starts 
from the most general hypotheses, the one that covers all the feature space, then during the 
course of the algorithm, for each negative training example, it will specialize the hypotheses 
that cover this negative example so it will not cover it anymore; as for a positive example, it 
will eliminate the hypotheses that does not cover it, so it starts from the most general 
hypotheses down to a more specific ones. 
 
But why I chose this Version Space algorithm? The idea behind using this algorithm is that it 
is general: it does not make any assumption on the type of the space being processed, and on 
top of that its powerful enough to generate the right hypotheses from the data recorded which 
will work in our system. 
 

Negative Example 

Positive Example 
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In our system, I am only going to use the SB part of the algorithm, because the problem is 
really complex (5-6 objects in each observation with 5-6 attributes each, which means about 
25-36 dimensions to treat) , and starting from the general hypotheses down the specific ones 
(the GB part) resulted in an enormous count of rules (2000 – 3000 rule) and they were taking 
lots of time to be generated (2-3 minutes for each new example at first, then 20-30 minutes for 
each example afterward). On the other hand the resulting hypotheses from the SB 
construction were really capable of capturing the behavior of the mentor, with only 100-200 
rules (with the same number of observations that generated the previous 2000 – 3000 rules) 
and constructing them is even on-line: that means the imitation system is being constructed 
directly during the recording stage. 
 
Now, before continuing, I need to define the concept of positive and negative examples in our 
simulation: The examples will be classified as positive and as negative based on the action 
part of the observation, that means if I have three actions: walk, stop, jump, and the example 
being processed contains the action walk, then it will be positive for the walk hypotheses and 
negative for the hypotheses of the two other actions. 
 
After clearing out that point let us begin talking about what happens during the SB 
construction. When the imitation system receives two positive observations with the same ID, 
which means two observations with the same objects and the same action, it will try to 
combine them in a new rule as follows: 
 At first, if  the system receives the following observation: 

Object: vehicle, distance: 0.3, action: walk 
The new generated rule will be: 

 If Object = vehicle and distance in [0.3, 03] Then walk 
 Now for a new observation: 

Object: vehicle, distance: 0.5, action: walk 
The rule will be generalized: 

 If Object = vehicle and distance in [0.3, 05] Then walk 
 At the end if the new observation: 

Object: vehicle, distance: 0.4, action: walk 
Nothing will change 

 
For each rule I will store two things: the number of observations that this rule covers and the 
time of these observations, so in the previous example the number of observations that the 
rule covers is 3 and the time of these observations is the sum of the time of each observation 
that we saw during the data filtering step. 
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Figure 38: Version Space, SB building algorithm 

During this machine learning process, the observations with the same ID will be processed 
together, so I will have a Version Space for each ID, and for each new observation I will 
choose the right VS based on the ID (if nothing found I will create a new one), then inside this 
VS I will generalize the rules with the same action and start the elimination process of the 
other rules with different actions (positive and negative examples). 
 

 
Figure 39: Working memory during the VS building process 

But this elimination process of the original algorithm can have some bad effects on our 
system, for an example: 
Let us take 2 rules from a Version Space: 
 If Object = vehicle and distance in [0.3, 05] Then walk 
 If Object = vehicle and distance in [0.1, 02] Then stop 
And a new observation: 
 Object: vehicle, distance: 0.4, action: stop 
Normally the VS algorithm will eliminate the first rule and the second rule will be: 
 If Object = vehicle and distance in [0.1, 04] Then stop 
But in this way we have lost some really important information, on the other hand if we tried 
to resolve the issue in the same VS, which means having intersecting rules: 
 If Object = vehicle and distance in [0.3, 05] Then walk 
 If Object = vehicle and distance in [0.1, 04] Then stop 
This contradiction will affect the VS algorithm dramatically, during the following 
generalizations and eliminations. 
But why we have this contradiction? It comes from the user, because during the course of the 
simulation he can take different actions based on the development of his Avatar or maybe he 
is experimenting with different strategies, that is why some researches limited the recording 
stage time (Tambellini & Sanza, 2006) so the user will not change his behavior, but we cannot 
do that in our case, and we need to deal with this contradiction, so our Avatar should adapt to 
this behavior changing. 
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3.3.2.2.1. Version Space Modification 
I propose a modification on the VS algorithm to avoid the previous dilemma. 
In the case of contradiction, I will create a new Version Space with the same ID which will 
process all the examples that causes contradiction with the original VS, and in the case of 
contradiction in the new VS, I will create a new one and so on. So the system could contain  
2-3 VS’s with the same ID but with rules that have contradiction with rules from the other 
VS’s, this way I have maintained the maximum amount of information, and as side effect of 
this modification I practically removed the elimination step of the original algorithm. 
 

 
Figure 40: Working memory during the Modified VS building process 

And the new algorithm will be: 

 
Figure 41: Version Space, Proposed modified SB building algorithm 

So in the previous example we had 2 rules: 
 If Object = vehicle and distance in [0.3, 05] Then walk 
 If Object = vehicle and distance in [0.1, 02] Then stop 
And the new observation was: 
 Object: vehicle, distance: 0.4, action: stop 
 
In this case we will create two VS’s, one with the following rules: 
  If Object = vehicle and distance in [0.3, 05] Then walk 
  If Object = vehicle and distance in [0.1, 02] Then stop 

And the other with the next rule: 
  If Object = vehicle and distance in [0.4, 04] Then stop 
Now, for a new observation like: 
 Object: vehicle, distance: 0.6, action: stop 
We will only generalize the rule in the second VS so we will have: 
 If Object = vehicle and distance in [0.4, 0.6] Then stop 
And so on. 
 
At the end of this stage we will have rules that represent the behavior of the user. 
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3.3.2.3. Force generation 
Now that we have rules from the previous step, we need to generate the force for each of these 
new rules to be used in the re-playing stage. 
 
This force will be based on two things, the number of the observations that each rule covers, 
and the time of these observations, so the force will be calculated from the percentage of the 
observations it covers from the total number of the observations of the recording stage, and 
the percentage of their time. 

3.3.2.4. Rules Fusion 
The idea behind this step is to minimize the number of rules: so if we have two rules and one 
is more generalized than the other, we will keep the generalized one and update its force with 
the force of the specific one which will be eliminated. 
 
This could happen during the same recording session, or during the fusion between the rules 
generated from a new recording stage with an already working imitation system created in a 
previous session. 
 
Example of a rule and the interpretation of the fuzzy values: 
 

Actual rule: 
If ( 
Object Type = TrafficLight 
 Distance in [0.624444..0.680000] 
 Orientation in [0.000000..1.000000] 
 Angle in [0.908163..0.989796] 
 Count in [0.500000..0.500000] 
 Isvred in [0.000000..1.000000] 
 Ispred in [1.000000..1.000000] 
) and ( 
Object Type = SideWalk 
 Distance in [0.000000..0.980000] 
 Orientation in [0.500000..0.500000] 
 Angle in [0.000000..0.000000] 
 Count in [0.500000..0.500000] 
 On in [1.000000..1.000000] 
) and ( 
Object Type = CrossRoad 
 Distance in [0.891111..0.920000] 
 Orientation in [0.500000..0.500000] 
 Angle in [0.000000..0.000000] 
 Count in [0.500000..0.500000] 
 On in [0.000000..0.000000] 
) 

Rule interpretation: 
If ( 
Object Type = TrafficLight 
 Distance: not that much far. 
 Orientation: it does not matter. 
 Angle: looking at it directly. 
 Count: only one. 
 Isvred: light for vehicle: it does not matter. 
 Ispred: light for pedestrians: red 
) and ( 
Object Type = SideWalk 
 Distance: not quite important 
 Orientation: just in front of him 
 Angle: not important for surfaces. 
 Count: only one. 
 On: is on it. 
) and ( 
Object Type = CrossRoad 
 Distance: really close. 
 Orientation: just in front of him 
 Angle: not important for surfaces. 
 Count: only one. 
 On: not on it. 
) 

Then 
STOP 

Number Of Observations = 19  number of observations that this rule cover 
Number Of Milliseconds = 50626  the time of these observations in milliseconds 
Force = 361.330383  the force of the rule 
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3.3.3. Re-playing stage 
After the previous machine learning stage we will have a Knowledgebase that consists of the 
rules that our Avatar has learned from his observations, we will use this Knowledgebase to 
construct a learning classifier system: ZCS, but not a normal ZCS because the rules in our 
case are not binary, so in other words it will be a Generic ZCS, and we are going to use only 
one LCS to represent the behavior of the observer just like Marc Métivier Without a mentor 
model (Guidance only) (Métivier, 2004), in this way the decisions that the mentor took during 
the recording stage will influence directly the behavior of the Avatar. 
 
In addition of using a ZCS we need to define a couple of things in order to adapt this LCS to 
our environment: 

 # symbol: In the definition of the LCS’s, the condition alphabet contains the symbol # 
which means whatever, but our system is generic, thus the # symbol will equal to the 
whole fuzzy values range (# = [0..1]), in this way all the fuzzy values will be accepted 
by this range. 

 Environment Reward: the reward is based on our 3D-city simulation, that is why we 
tried to make the reward system to feel as natural as possible, for example: 

o The Avatar will receive a negative reward if he was involved in an accident 
with a vehicle 

o The Avatar will receive a positive reward if he crossed the street on the right 
place (on a cross road) respecting the right conditions (the traffic light is green 
for the pedestrians) 

o …. 
 Rules Force: since the reward could be negative, we will have to insure that the force 

of the rules stays always positive, so we need to delete the rules with negative force. 
 Genetic Algorithm: Because we have only one LCS, we did not use a genetic 

algorithm, in order to maintain the behavior of the mentor intact. 
 
At the end, we have created a system that controls the behavior of our Avatar based on what 
he learned from the mentor during the recording stage, with the force of the rules evolving 
based on the Bucket Bridge algorithm. 
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3.4. Observations 
The following observations will be based on imitating our mentor while he is crossing the 
street, although it looks like a simple problem, but as matter of a fact there is a lot of things to 
account for like: the traffic light, the other pedestrians, the vehicles…beside, we should not 
forget that the observer should infer the importance of the color of the traffic light all alone, 
so this small problem is a really a good test bed for our system, we tested our system in three 
different scenarios: 

 Scenario 1: We removed all vehicles and other pedestrians, so the streets were empty. 
 Scenario 2: We added vehicles. 
 Scenario 3: We added the pedestrians, so the environment contained everything. 

In all of those scenarios our mentor was behaving normally: he was always stopping when the 
traffic light is red. 

3.4.1. Results 
 
 
 
 
 
 
 
 

 Scenario 1: our Avatar was capable of understanding the importance of the traffic 
light, so after only 2-3 street crossing of the mentor, and during the re-playing stage he 
was stopping when the traffic light is red, so it was a successful imitation. 

 Scenario 2: Since the number of vehicles is a lot more significant than the number of 
traffic lights (5-8 vehicles for 2 traffic lights). Because of that, the vehicles were a lot 
more important in affecting his behavior than the traffic lights, that is why sometimes 
he was crossing the street when there is no vehicles although the traffic light was red.  

 Scenario 3: like in scenario 2, the other pedestrians and vehicles will be more 
important to him than the traffic light, so sometimes our Avatar was stopping when he 
sees that the other pedestrians are stopping or when there are some vehicles in front of 
him, and like the previous scenario sometimes he was crossing the street when there is 
no vehicles although the traffic light was red, and some pedestrians already stopped. 

Plus the previous results we made several more observations: 
 In all these scenarios the system at the end will converge to the same amount of rules 

(≈13 rules for scenario 1, ≈40-50 for scenario 2, ≈170-180 for scenario 3), the only 
benefit of controlling the Avatar longer than that: fine tuning the force for each rule, 
and the duration mentioned in the previous results, are the minimum durations that we 
found in order to get the best possible imitation. The difference of the number of rules 
between the scenarios is due to the complexity of the environment. 

 The more the environment is complex, the more we encountered a noise problem: the 
system became less capable of discovering the important objects (the traffic light in 

Scenario No. Number of data 
recorded 

Time of 
recording 

1 ≈ 500 observation ≈ 3 minutes 

2 ≈ 1900 observation ≈ 5 minutes 

3 ≈ 35000 observation ≈ 40 minutes 
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our case), so all objects have the same degree of importance, so they were all capable 
of influencing our Avatar action with the same force. 

 Overfitting: the system will try to behave like the mentor as much as possible, but that 
will create problems when placing the system in a different environment like using the 
Knowledgebase of scenario 3 in scenario 1: In this case none of the rules conditions 
will be satisfied (there is neither vehicles nor pedestrians) due to the noise problems 
that we talked about earlier, and the system will use the Covering operator of the LCS 
to create new classifiers most of the time, as if it did not learn anything. But if we used 
the Knowledgebase learned from scenario 1 in scenario 3: we will have a flawless 
execution, because the Avatar in scenario 1 learned the importance of the traffic light. 

 The system will imitate the user even if he made the wrong choices (like crossing the 
street on the red light), so, when we did several other experiments with a mentor not 
behaving logically, our Avatar was imitating him, by taking those wrong actions. And, 
although the LCS will try to penalize the rules that could lead to such actions, those 
decisions will be made at least 1-2 times, before these rules lose their force.

3.5. Conclusions 
At the end, our system was capable of imitating the mentor to some extent, but we tried to 
make the system as much general as possible, so for instance, in crossing the road problem we 
did not specify the important objects for the system and we left it to infer that alone, because 
of that sometimes we would have some odd situations where the Avatar takes illogical 
decisions (from an external point of view) during the re-playing stage; that is because he takes 
into account everything he sees. 
 
But in general the imitation was successful and the final Knowledgebase really modeled the 
mentor behavior. 
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3.6. Implementation in an MMORPG 
Massively multiplayer online role-playing game or MMORPG is a genre of computer role 
playing games or RPG’s where the player controls an avatar in a virtual world imagined by 
the developer. The difference between an RPG and an MMORPG is the huge number of 
players playing at a certain time and most importantly the persistent world: it continues to 
exist and evolve while the player is away from the game, which creates a virtual world that 
does not stop of evolving when the player disconnects. 
 
This kind of games gained a lot of momentum lately, not because players fight against 
enemies, environment hazard or even other human controlled avatars, but because it is a 
social experience where the player meets other people, teams up with them to do more 
difficult quests and raids…So the social networking aspect of this kind of games is really 
important, and one of the driving forces of the players to connects and play this kind of 
games. 
 
One of the most famous MMORPG is called World of Warcraft or WoW developed by 
Blizzard Entertainment, it was released in 2004 and in 2008 there were more than 10 million 
subscribers to this vast universe (about 62% of the massively multiplayer online game 
market), with about 1-2 millions of active users at the same time. 
 

 
Figure 42: World of Warcraft 

Beside normal MMORPG’s like WOW or EVE Online (a space simulation based 
MMORPG), there is a sub genre of MMORPG where the player avatar is in a real virtual 
world (non fictional one), he can explore, meet other avatars, socialize, participate in 
individual and group activities, and create and trade virtual properties and services with one 
another just like in the real world, they are called Social Virtual Worlds, and one of the 
famous is called Second Life developed by Linden Labs, it was released in 2003 and in 2008 
there was more than 8 million subscribers but with less than 70 thousands active user at the 
same time (Varvello M. & Picconi F. , 2008). 
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Figure 43: Second Life 

The problem with these kinds of games is the difference between the number of subscribers 
and the number of active users at once, so for an example: although there are about 8 million 
subscribers in Second Life, with only 70 thousands active users, this massive virtual world 
feels empty most of the time, furthermore most of the population is concentrated around 
famous places because there is more chances to meet other avatars. 
 
One of the uses of our imitation system is to solve this problem: to keep all 8 million 
subscribers on-line in a game like Second Life, to keep them always in the virtual world, in 
this way the world will be always populated. So while the player is navigating in the virtual 
world and interacting with other players, our system will be learning the places he likes, the 
criteria of the other peoples that he interacts with, and the way he interacts with them (playing 
games with them, dancing….), and when our system controls the user’s Avatar, it will try to 
search for people that could interest the user, and it will try to interact with them, thus when 
the player re-connects to this virtual world, our system will give him a list of the people it 
met, the activities it did, and a summary of their characteristics, so that the user could have 
some new friends that might interest him (Hu S. Y. & Jiang J. R. , 2008). Beside, our system, 
through the use of LCS’s and the concept of exploration / exploitation, could try to go to new 
places which the user would never think about going to. As a result, this virtual world will be 
always populated, and moreover most places will be populated too. 
 
And we can also use our system in MMORPG’s like World of Warcraft, hence the avatar will 
gain experience, some fighting skills, or other items while the user is off-line. However the 
utilization of Bots5 to control the user avatar is forbidden, because the users might abuse the 
use of it to gain levels and experience by letting the system control their avatar for 
consecutive days. In other games, like EVE online, Avatars Still gain experience when they 
are not connected (e.g. they learn new abilities) and it could be easier to integrate our system 
in such games. 

                                                 
5 Computer controlled character that the player compete against in video games, and mostly in FPS’s 
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3.7. Future work 
There are several propositions in order to either make the system more capable of modeling 
the mentor behavior, or to use it in a new type of applications: 

 Learning the behavior of two users and interpolating between them, for example: in 
the street crossing problems the system can learn the behavior of a young user who 
will not pay much attention to the traffic light but crosses when the street is empty 
(Risky behavior), and another old user who always crosses depending on the traffic 
light always (Safe behavior), so we would have two different behaviors that we could 
interpolate between them to create several other behaviors that has some degree of risk 
and safety in them. 

 In order to make our imitating system more powerful we can use Marc Métivier with 
mentor model (Métivier, 2004): using his DoubleCS system, we can separate the 
mentor LCS of the observer LCS, so in this way our observer behavior will only be 
influenced by the behavior of the mentor, not controlled totally by it. 

 Making the learning stage more context sensitive: filtering the important objects in a 
certain situation, this way, we will have several LCS’s each for a specific problem, 
and the decision for the right LCS could be realized by using another LCS (an MCS 
structure). 
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Appendix 

Appendix A: Vehicles and pedestrians rule based system 
Both the vehicles and pedestrians in our 3D city simulation are controlled by a rule based 
system: so they have a field of view just like our Avatar in the form of a 3D cone, and for 
each frame we have a list of the objects state that each of them can see and sense, if this list 
satisfy a rule condition, its action will be executed directly. 
 
The idea behind using a rule based system to model these objects behavior is quite simple: 
their behavior is really simple as we will see. Their knowledgebase does not contain more 
than 2-3 rules, so it is really easy to maintain. 
 Vehicles:  

o If traffic light is close and is red for vehicles Then STOP 
o If vehicle is close and in front and not advancing Then STOP 
o If vehicle is really close and in front and advancing Then STOP 
o If pedestrian is close and in front Then STOP 
o Else GO 

 Pedestrians: 
o If traffic light is close and is red for pedestrians and just looking at it Plus on side 

walk Then STOP 
o If vehicle is close and in front Plus not on side walk Then STOP 
o If On cross road Then WALK FAST 
o Else WALK NORMAL 
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